An optimal host–microbiota interaction in the human vagina governs the reproductive health status of a woman. The marked depletion in the beneficial Lactobacillus sp. increases the risk of infection with sexually transmitted pathogens, resulting in gynaecological issues. Vaginal infections that are becoming increasingly prevalent, especially among women of reproductive age, require an effective concentration of antimicrobial drugs at the infectious sites for complete disease eradication. Thus, topical treatment is recommended as it allows direct therapeutic action, reduced drug doses and side effects, and self-insertion. However, the alterations in the physiological conditions of the vagina affect the effectiveness of vaginal drug delivery considerably. Conventional vaginal dosage forms are often linked to low retention time in the vagina and discomfort which significantly reduces patient compliance. The lack of optimal prevention and treatment approaches have contributed to the unacceptably high rate of recurrence for vaginal diseases. To combat these limitations, several novel approaches including nano-systems, mucoadhesive polymeric systems, and stimuli-responsive systems have been developed in recent years. This review discusses and summarises the recent research progress of these novel approaches for vaginal drug delivery against various vaginal diseases. An overview of the concept and challenges of vaginal infections, anatomy and physiology of the vagina, and barriers to vaginal drug delivery are also addressed.
BACKGROUND: The performances of four types of glucose oxidase (GOD) immobilization materials based on poly(vinyl alcohol) (PVA) were compared. The matrices of interest were chemically-linked PVA, freeze-thawed PVA cryogel, tetramethoxysilane (TMOS) sol-gel-PVA hybrid material, and alumina sol-gel-PVA hybrid material.
Novel techniques for generating robust and accurate meshes based on 3-D imaging data have recently been developed which make the prediction of macro-structural properties of composite structures based on micro-structural composition straightforward. The accuracy of reconstructions is a particular strong point of these new techniques with geometric accuracy only contingent on image quality. Algorithms developed and used are topology preserving, volume preserving and multi-part geometric models can be handled straightforwardly. In addition to modeling different constituent materials as separate mesh domains, material properties can be assigned based on signal strength in the parent image thereby providing a way of modeling continuous variations in properties for an inhomogeneous medium. These new techniques have been applied to the analysis of a ceramic matrix composite which was micro-CT scanned and the influence of imaging parameters on both predicted bulk properties and localized stresses has been explored.This paper utilizes the Computed Tomography (CT) as the NDE technique to characterize the initial matrix porosity's locations and sizes in a Ceramic Matrix Composites (CMC) test specimen. Further, the Finite Element (FE) method is applied to calculate the localized stress field around these pores based on the geometric modeling of the specimen's CT results, using image analysis, geometric modeling and meshing software, ScanIP/ScanFE [1]. The analyses will simulate experimental loading conditions where scanned specimens are then tensile tested to a 0.07 % total strain to identify the matrix cracking locations in relation to the original pores. Additional work is carried out combining the image processing and finite element to investigate the applicability of some novel meshing techniques. Finally, the calculated Finite Element [2-4] localized stress risers are compared with the observed matrix cracking locations. This work is expected to show that an FE model based on an accurate 3-D rendered model from a series of CT slices is an essential tool to quantify the effects of internal macroscopic defects of complex material systems such as CMCs.
INTRODUCTIONThe CT technique was initially implemented in the medical field in the early 1970's, but has gained recognition as an important tool in the material research area as a viable NDE technique to measure volumetric information such as dimensions, voids, inclusions, and density variations, within a solid and to provide pictorial views of the internal and external structure of materials [7]. The most important advantage of the CT is the possibility of an accurate 3-D visualization and quantification of the internal structure of materials using a series of 2-D cross-sectional CT images. Several material researchers went beyond simple image analysis and quantitative image assessment, and used the 3-D accurate visualization to generate a finite element model to calculate the localized stress and strain field around the observed internal material defects [8]. Such an anal...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.