Abstract. After several tsunami events with disastrous consequences around the world, coastal countries have realized the need to be prepared to minimize human mortality and damage to coastal infrastructures, livelihoods and resources. The international scientific community is striving to develop and validate methodologies for tsunami hazard and vulnerability and risk assessments. The vulnerability of coastal communities is usually assessed through the definition of sets of indicators based on previous literature and/or post-tsunami reports, as well as on the available data for the study site. The aim of this work is to validate in light of past tsunami events the indicators currently proposed by the scientific community to measure human vulnerability, to improve their definition and selection as well as to analyse their validity for different country development profiles. The events analyzed are the 2011 Great Tohoku tsunami, the 2010 Chilean tsunami, the 2009 Samoan tsunami and the 2004 Indian Ocean tsunami. The results obtained highlight the need for considering both permanent and temporal human exposure, the former requiring some hazard numerical modelling while the latter is related to site-specific livelihoods, cultural traditions and gender roles. The most vulnerable age groups are the elderly adults and the children, the former having much higher mortality rates. Female mortality is not always higher than male and not always related to dependency issues. Higher numbers of disabled people do not always translate into higher numbers of victims. Besides, it is clear that mortality is not only related to the characteristics of the population but also the buildings. A high correlation has been found between the affected buildings and the number of victims, being very high for completely damaged buildings. Distance to the sea, building materials and expected water depths are highly determining factors regarding the type of damage in buildings.
Abstract. After several tsunami events with disastrous consequences around the world, coastal countries have realized the need to be prepared to minimize human mortality and damage to coastal infrastructures, livelihoods and resources. The international scientific community is striving to develop and validate methodologies for tsunami hazard and vulnerability and risk assessments. The vulnerability of coastal communities is usually assessed through the definition of sets of indicators based on previous literature and/or post-tsunami reports, as well as on the available data for the study site. The aim of this work is to validate, in light of past tsunami events, the indicators currently proposed by the scientific community to measure human vulnerability, to improve their definition and selection as well as to analyse their validity for different country development profiles. The events analysed are the 2011 Great Tohoku tsunami, the 2010 Chilean tsunami, the 2009 Samoan tsunami and the 2004 Indian Ocean tsunami. The results obtained highlight the need for considering both permanent and temporal human exposure, the former requiring some hazard numerical modelling, while the latter is related to site-specific livelihoods, cultural traditions and gender roles. The most vulnerable age groups are the elderly and children, the former having much higher mortality rates. Female mortality is not always higher than male mortality and not always related to dependency issues. Higher numbers of disabled people do not always translate into higher numbers of victims. Besides, it is clear that mortality is not only related to the characteristics of the population but also of the buildings. A high correlation has been found between the affected buildings and the number of victims, being very high for completely damaged buildings. Distance to the sea, building materials and expected water depths are important determining factors regarding the type of damage to buildings.
No abstract
<div>The Intergovernmental Coordination Group for the Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions (ICG/CARIBE EWS) was established in 2005 as a subsidiary body of the IOC-UNESCO with the purpose of providing efficient assistance on tsunami risk reduction to Member States in the Caribbean region after the lessons learnt from the 2004 Indian Ocean tsunami.</div><div>&#160;</div><div>The aim of the work that we present here, is strengthen the capacities of early warning and response for tsunamis in the Caribbean through the development of community-level tsunami inundation maps for select coastal communities and a technical guide; both to support their preparation for and response to tsunamis. The selected communities under study are in Antigua and Barbuda, Barbados, Dominican Republic, St. Vincent and the Grenadines, and Trinidad and Tobago.</div><div>&#160;</div><div>To this end, we use Tsunami-HySEA model, developed by EDANYA Group, which implements in the same code the three phases of an earthquake generated tsunami: generation, propagation and coastal inundation. At the same time it is implemented in nested meshes with different resolution and multi-GPU environment, which allows much faster than real time simulations. Due to this advantage it can produce a 4 h simulation in a 60 arcsec resolution grid for the whole Caribbean Sea in less than 4 min with a single general-purpose GPU.</div><div>&#160;</div><div>Once provided the seismic parameters to reproduce the main scenarios that could affect to the nominated communities, and the topobathymetry data available from the study area, an exhaustive process of construction of 4 levels nested meshes was performed for each localization. Secondly, the events are simulated in order to obtain, among others, maximum depth in coast inundation with 5 meters resolution. Finally, all of these data allow us to make a detailed inundation map as a contribution to furthering tsunami risk assessment.</div><div>&#160;</div><div>Acknowledgements. This work was done under the auspices of IOC-UNESCO and funded by EU (DG-ECHO)</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.