Cytochrome P450 (CYP) has been shown to confer resistance in numerous terrestrial insects that consume potentially toxic secondary metabolites in plants, but fewer studies have examined the role of critical biotransformation enzymes in allowing marine organisms to consume chemically defended foods. This study examined the expression of CYP1A and CYP2N mRNAs in several butterflyfish species, which can feed on numerous chemically defended soft and hard corals. In addition, the effect of an extract from a soft coral (Sinnularia maxima) on expression of hepatic CYP1A and CYP2 mRNAs was also examined. Fish were fed extracts on days 1, 3 and 5, and expression was examined on day 5. Phylogenetic analyses of the CYP1A cDNA from 12 species of butterflyfish (DNA, amino acid) indicate well-separated groupings according to their feeding strategies. The non-coralline feeding Chaetodon xanthurus exhibited a 7-fold higher basal expression of CYP2N8 relative to the other species studied. Although induction of CYP2N7 expression was observed in C. punctatofasciatus, CYP1A and CYP2N was largely unaffected or diminished by extract treatment in the other species of butterflyfish. These results indicated groupings of feeding strategy with CYP1A phylogeny in Chaetodon, but generally unaltered expression of CYP1A and CYP2N following dietary treatment with an extract from a chemically defended soft coral suggesting an inconclusive role of these isoforms in the detoxification of chemicals in these extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.