Chitosan microspheres having good spherical geometry and a smooth surface were prepared by the glutaraldehyde cross-linking of an aqueous acetic acid dispersion of chitosan in paraffin oil using dioctyl sulphosuccinate as the stabilizing agent. Microspheres having different degrees of swelling were made by varying the cross-linking density. Microspheres were prepared by incorporating theophylline, aspirin or griseofulvin. Drug incorporation efficiencies exceeding 80% could be achieved for these drugs. In-vitro release studies of these drugs were carried out in simulated gastric and intestinal fluids at 37 degrees C. It was observed that the drug release rates were influenced by the cross-linking density, particle size and initial drug loading in the microspheres.
ABSTRACTmers within polymeric microspheres. The data suggest that due to steric hindrance factors, polymers with greater lactide content were less amenable to the formation of adduct impurities compared with PLGA 50:50 copolymers.The purpose of this research was to study the chemical reactivity of a somatostatin analogue, octreotide acetate, formulated in microspheres with polymers of varying molecular weight and co-monomer ratio under in vitro testing conditions. Poly(D,L-lactide-coglycolide) (PLGA) and poly(D,L-lactide) (PLA) microspheres were prepared by a solvent extraction/evaporation method. The microspheres were characterized for drug load, impurity content, and particle size. Further, the microspheres were subjected to in vitro release testing in acetate buffer (pH 4.0) and phosphate buffered saline (PBS) (pH 7.2). In acetate buffer, 3 microsphere batches composed of low molecular weight PLGA 50:50, PLGA 85:15, and PLA polymers (≤10 kDa) showed 100% release with minimal impurity formation (<10%). The high molecular weight PLGA 50:50 microspheres (28 kDa) displayed only 70% cumulative release in acetate buffer with significant impurity formation (~24%). In PBS (pH 7.4), on the other hand, only 50% release was observed with the same low molecular weight batches (PLGA 50:50, PLGA 85:15, and PLA) with higher percentages of hydrophobic impurity formation (ie, 40%, 26%, and 10%, respectively). In addition, in PBS, the high molecular weight PLGA 50:50 microspheres showed only 20% drug release with ~66% mean impurity content. The chemically modified peptide impurities inside microspheres were structurally confirmed through Fourier transform-mass spectrometry (FT-MS) and liquid chromatography/mass spectrometry (LC-MS/MS) analyses after extraction procedures. The adduct compounds were identified as covalently modified conjugates of octreotide with lactic and glycolic acid mono-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.