SUMMARYEvidence is presented supporting the hypothesis that reovirus intermediate subviral particles (ISVP), which show increased infectivity relative to intact virions, can gain entry into host L cells by two alternative pathways. One pathway is by the process of viropexis, involving phagocytic vacuoles. A second entry pathway is via direct penetration of the plasma membrane of the cell, without involvement of a phagocytic vacuole. Using electron microscopy, a kinetic analysis of the uptake process was carried out. Results indicate that at 37 °C ISVP gain entry into host cells primarily by direct entry, although viropexis also occurs, while intact virions gain entry by viropexis almost exclusively. A second line of experimental evidence consistent with the idea that ISVP can 'melt' their way through the plasma membrane is provided by studies on the release of pre-loaded radioactive 51Cr from host cells following infection. 51Cr release data demonstrate that infection with ISVP leads to an immediate increased leakiness of the cell plasma membrane, whereas no such increase takes place following infection with an equivalent number of intact virions. This demonstrates that ISVP can interact with the plasma membrane of the cell in a manner which is qualitatively different from the interaction between intact virions and the plasma membrane.The ability of ISVP to directly penetrate the plasma membrane of the host cell, which intact virions apparently cannot do, could explain the decreased duration of the eclipse phase, as well as the increased infectivity of ISVP, relative to that observed for infection with intact virions.
Sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) is the most widely accepted internal standard for protein NMR studies in aqueous conditions. Since its introduction as a reference standard, however, concerns have been raised surrounding its propensity to interact with biological molecules through electrostatic and hydrophobic interactions. While DSS has been shown to interact with certain proteins, membrane protein studies by solution-state NMR require use of membrane mimetics such as detergent micelles and, to date, no study has explicitly examined the potential for interaction between membrane mimetics and DSS. Consistent with its amphipathic character, we show DSS to self-associate at elevated concentrations using pulsed field gradient-based diffusion NMR measurements. More critically, DSS diffusion is significantly attenuated in the presence of either like-charged sodium dodecyl sulfate or zwitterionic dodecylphosphocholine micelles, the two most commonly used detergent-based membrane mimetic systems used in solution-state NMR. Binding to oppositely charged dodecyltrimethylammonium bromide micelles is also highly favourable. DSS-micelle interactions are accompanied by a systematic, concentration- and binding propensity-dependent change in the chemical shift of the DSS reference signal by up to 60 ppb. The alternative reference compound 4,4-dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA) exhibits highly similar behaviour, with reversal of the relative magnitude of chemical shift perturbation and proportion bound in comparison to DSS. Both DSS and DSA, thus, interact with micelles, and self-assemble at high concentration. Chemical shift perturbation of and modulation of micellar properties by these molecules has clear implications for their use as reference standards.
Brewster angle reflections from oxidized cholesterol membranes are described in terms of uniaxial crystal model. The refractive indices perpendicular and parallel to the membrane are 1.515 and 1.555, respectively. A multilayer model was also considered; however, under the approximations used, both models are equivalent and cannot be distinguished. Egg albumin and hexadecyltrimethylammonium bromide altered the refractive indices while 2,4-dinitrophenol and valinomycin addition did not produce a detectable change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.