Sundowner winds are downslope gusty winds often observed on the southern slopes of the Santa Ynez Mountains (SYM) in coastal Santa Barbara (SB), California. They typically peak near sunset and exhibit characteristics of downslope windstorms through the evening. They are SB’s most critical fire weather in all seasons and represent a major hazard for aviation. The Sundowner Winds Experiment Pilot Study was designed to evaluate vertical profiles of winds, temperature, humidity, and stability leeward of the SYM during a Sundowner event. This was accomplished by launching 3-hourly radiosondes during a significant Sundowner event on 28–29 April 2018. This study showed that winds in the lee of the SYM exhibit complex spatial and temporal patterns. Vertical profiles showed a transition from humid onshore winds from morning to midafternoon to very pronounced offshore winds during the evening after sunset. These winds accompanied mountain waves and a northerly nocturnal lee jet with variable temporal behavior. Around sunset, the jet was characterized by strong wind speeds enhanced by mountain-wave breaking. Winds weakened considerably at 2300 PDT 29 April but enhanced dramatically at 0200 PDT 29 April at much lower elevations. These transitions were accompanied by changes in stability profiles and in the Richardson number. A simulation with the Weather Research and Forecasting (WRF) Model at 1-km grid spacing was examined to evaluate the skill of the model in capturing the observed winds and stability profiles and to assess mesoscale processes associated with this event. These results advanced understanding on Sundowner’s spatiotemporal characteristics and driving mechanisms.
This study uses 45 years of observational records from 517 historical surface weather stations over northern Eurasia to examine changing precipitation characteristics associated with increasing air temperatures. Results suggest that warming air temperatures over northern Eurasia have been accompanied by higher precipitation intensity but lower frequency and little change in annual precipitation total. An increase in daily precipitation intensity of around 1%–3% per each degree of air temperature increase is found for all seasons as long as a station’s seasonal mean air temperature is below about 15°–16°C. This threshold temperature may be location dependent. At temperatures above this threshold, precipitation intensity switches to decreasing with increasing air temperature, possibly related to decreasing water vapor associated with extreme high temperatures. Furthermore, the major atmospheric circulation of the Arctic Oscillation, Scandinavian pattern, east Atlantic–western Eurasian pattern, and polar–Eurasian pattern also have significant influences on precipitation intensity in winter, spring, and summer over certain areas of northern Eurasia.
Global warming is expected to enhance drought extremes in the United States throughout the twenty-first century. Projecting these changes can be complex in regions with large variability in atmospheric and soil moisture on small spatial scales. Vapor Pressure Deficit (VPD) is a valuable measure of evaporative demand as moisture moves from the surface into the atmosphere and a dynamic measure of drought. Here, VPD is used to identify short-term drought with the Standardized VPD Drought Index (SVDI); and used to characterize future extreme droughts using grid dependent stationary and non-stationary generalized extreme value (GEV) models, and a random sampling technique is developed to quantify multimodel uncertainties. The GEV analysis was performed with projections using the Weather Research and Forecasting model, downscaled from three Global Climate Models based on the Representative Concentration Pathway 8.5 for present, mid-century and late-century. Results show the VPD based index (SVDI) accurately identifies the timing and magnitude short-term droughts, and extreme VPD is increasing across the United States and by the end of the twenty-first century. The number of days VPD is above 9 kPa increases by 10 days along California’s coastline, 30–40 days in the northwest and Midwest, and 100 days in California’s Central Valley.
Ozone in the upper troposphere-lower stratosphere (UTLS) is primarily regulated by tropospheric dynamics. Understanding mechanisms driving ozone variability at the UTLS is crucial to evaluate the transport of mass to and from the lower stratosphere. The El Niño-Southern Oscillation (ENSO) is the primary coupled mode acting on interannual timescales modulating tropospheric circulation worldwide. ENSO teleconnections can depend on the phases of the Pacific Decadal Oscillation (PDO) and on the characteristics of the warming over central and eastern tropical Pacific. This study investigates the role of ENSO on UTLS ozone variability with focus on South America and examines patterns of teleconnections in the two recent warm (1980)(1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996)(1997) and cool (1998-2012) PDO phases. The dominant mode of ozone variability is identified by applying a principal component analysis (PCA) to modern-era retrospective analysis for research and applications, Version 2 (MERRA-2) ozone data from September-November (SON). SON is the season with the largest UTLS ozone variance over South America. The first mode resembles a Rossby wave train across South America with spatial patterns dependent on PDO phase. We show that the ENSO teleconnections and respective influences on SON UTLS ozone are stronger during the cool PDO when ENSO and PDO are mostly in phase. Additionally, the strength of the ENSO teleconnection appears to depend on patterns of SST anomalies over tropical Pacific. The decadal variability in the ENSO-PDO relationships and teleconnections with the Southern Hemisphere resulted in a shift in upper tropospheric circulation in tropical and subtropical regions of South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.