The infection of biomaterials is determined by an interplay of adhesion and surface growth of the infecting organisms. In this study, the antimicrobial effects on adhering bacteria of a positively charged poly(methacrylate) surface (xi potential +12 mV) were compared with those of negatively charged poly(methyl methacrylate) (-12 mV) and a highly negatively charged poly(methacrylate) (-18 mV) surface. Initial adhesion of Staphylococcus aureus ATCC 12600, Staphylococcus epidermidis HBH(2) 102, Escherichia coli O2K2 and Pseudomonas aeruginosa AK1 to these surfaces was measured in a parallel plate flow chamber in phosphate-buffered saline. Adhering bacteria were allowed to multiply by perfusing the flow chamber with growth medium. All bacteria adhered most rapidly to the positively charged surface, but there was no subsequent surface growth of the Gram-negative strains. On the negatively charged surfaces, despite a slower initial adhesion, surface growth of the adhering bacteria was exponential for both Gram-positive and Gram-negative strains. These results suggest that positively charged biomaterial surfaces exert an antimicrobial effect on adhering Gram-negative bacteria, but not on Gram-positive ones.
The infection risk of biomaterials implants varies between different materials and is determined by an interplay of adhesion and surface growth of the infecting organisms. In this study, we compared initial adhesion and surface growth of Staphylococcus epidermidis HBH(2) 102 and Pseudomonas aeruginosa AK1 on poly(dimethylsiloxane), Teflon, polyethylene, polypropylene, polyurethane, poly(ethylene terephthalate), poly(methyl methacrylate), and glass. Initial adhesion was measured in situ in a parallel plate flow chamber with microorganisms suspended in phosphate-buffered saline, while subsequent surface growth was followed in full and in 20 times diluted growth medium. Initial adhesion of both bacterial strains was similar to all biomaterials. In full growth medium, generation times of surface growing S. epidermidis ranged from 17 to 38 min with no relation to wettability, while in diluted growth medium generation times increased from 44 to 98 min with increasing surface wettability. For P. aeruginosa no influence of surface wettability on generation times was observed, but generation times increased with decreasing desorption rates, maximal generation times being 47 min and minimal values down to 30 min. Generally, generation times of adhering bacteria were shorter than of planktonic bacteria. In conclusion, surface growth of initially adhering bacteria is influenced by biomaterials surface properties to a greater extent than initial adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.