The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p3×10 −4 ) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0 6-0 8) object displaying prominent Balmer and [O III] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m r′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter 4 kpc and a stellar mass of M * ∼(4-7)×107 M e , assuming a mass-to-light ratio between 2 to 3 M e L e −1 . Based on the Hα flux, we estimate the star formation rate of the host to be 0.4 M e yr −1 and a substantial host dispersion measure (DM) depth 324 pc cm −3 . The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102's location reported by Marcote et al. is offset from the galaxy's center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.
Fast radio bursts 1,2 are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients 3 . So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources 4 or the presence of peculiar field stars 5 or galaxies 4 . These attempts have not resulted in an unambiguous association 6,7 with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source 8-11 , using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with nonthermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts 12,13 and tidal disruption events 14 . However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.The repetition of bursts from FRB 121102 9,10 enabled a targeted interferometric localization campaign with the Karl G. Jansky Very Large Array (VLA) in concert with single-dish observations using the 305-m William E. Gordon Telescope at the Arecibo Observatory. We searched for bursts in VLA data with 5-ms sampling using both beam-forming and imaging techniques 15 (see Methods). In over 83 h of VLA observations distributed over six months, we detected nine bursts from FRB 121102 in the 2.5-3.5-GHz band with signalto-noise ratios ranging from 10 to 150, all at a consistent sky position.
The millisecond-duration radio flashes known as fast radio bursts (FRBs) represent an enigmatic astrophysical phenomenon. Recently, the sub-arcsecond localization (∼100 mas precision) of FRB121102 using the Very Large Array has led to its unambiguous association with persistent radio and optical counterparts, and to the identification of its host galaxy. However, an even more precise localization is needed in order to probe the direct physical relationship between the millisecond bursts themselves and the associated persistent emission. Here, we report very-long-baseline radio interferometric observations using the European VLBI Network and the 305 m Arecibo telescope, which simultaneously detect both the bursts and the persistent radio emission at milliarcsecond angular scales and show that they are co-located to within a projected linear separation of 40 pc (12 mas angular separation, at 95% confidence). We detect consistent angular broadening of the bursts and persistent radio source (∼2-4 mas at 1.7 GHz), which are both similar to the expected Milky Way scattering contribution. The persistent radio source has a projected size constrained to be 0.7 pc (0.2 mas angular extent at 5.0 GHz) and a lower limit for the brightness temperature of T 5 10 K b 7´. Together, these observations provide strong evidence for a direct physical link between FRB121102 and the compact persistent radio source. We argue that a burst source associated with a low-luminosity active galactic nucleus or a young neutron star energizing a supernova remnant are the two scenarios for FRB121102 that best match the observed data.
Since its commissioning in 1980, the Very Large Array (VLA) has consistently demonstrated its scientific productivity. However, its fundamental capabilities have changed little since 1980, particularly in the key areas of sensitivity, frequency coverage, and velocity resolution. These limitations have been addressed by a major upgrade of the array, which began in 2001 and will be completed at the end of 2012. When completed, the Expanded VLA -the EVLA -will provide complete frequency coverage from 1 to 50 GHz, a continuum sensitivity of typically 1 µJy/beam (in 9 hours with full bandwidth), and a modern correlator with vastly greater capabilities and flexibility than the VLA's. In this paper we describe the goals of the EVLA project, its current status, and the anticipated expansion of capabilities over the next few years. User access to the array through the OSRO and RSRO programs is described. The following papers in this special issue, derived from observations in its early science period, demonstrate the astonishing breadth of this most flexible and powerful general-purpose telescope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.