The cell-free extracts of a landomycin E-producing strain, Streptomyces globisporus 1912-2, were shown to contain a low-molecular-weight compound that, like A-factor, restored the landomycin E and streptomycin biosynthesis and sporulation of the defective mutants S. globisporus 1912-B2 and S. griseus 1439, respectively. The compound was purified by thin layer chromatography and HPLC. It had an absorption maximum at λmax=245 nm and a molecular mass of m/z 244. On the basis of NMR spectroscopy ((1)H, (13)C, HSQC, HMBC, COSY and NOE) the chemical structure of the compound was elucidated as 6-benzyl-3-eth-(Z)-ylidene-1-methyl-piperazine-2,6-dione ((L)-N-methylphenylalanyl-dehydrobutyrine diketopiperazine (MDD)). The sequences of arpA genes in S. globisporus 1912-2 and S. griseus NBRC 13350 are highly conserved. An explanation for the observed biological activity of MDD was proposed.
Landomycin E (LE) is an angucycline antibiotic produced by Streptomyces globisporus.Previously, we have shown a broad anticancer activity of LE which is, in contrast to the structurally related and clinically used anthracycline doxorubicin (Dx), only mildly affected by multidrug resistance-mediated drug efflux. In the present study, cellular and molecular mechanisms underlying the anticancer activity of landomycin E towards Jurkat T-cell leukemia cells were dissected focusing on the involvement of radical oxygen species (ROS). LE-induced apoptosis distinctly differed in several aspects from the one induced by Dx. Rapid generation of hydrogen peroxide already at one hour drug exposure was observed in case of LE but not found before 24h for Dx. In contrast, Dx but not LE induced production of superoxide radicals. Mitochondrial damage, as revealed by JC-1 staining, was weakly enhanced already at 3h LE treatment and increased significantly with time. Accordingly, activation of the intrinsic apoptosis pathway initiator caspase-9 was not detectable before 12h exposure. In contrast, cleavage of the down-stream caspase substrate PARP-1 was clearly induced already at the three hour time point. Out of all caspases tested, only activation of effector caspase-7 was induced at this early time points paralleling the LE-induced oxidative burst. Accordingly, this massive cleavage of caspase-7 at early time points was inhibitable by the radical scavenger N-acetylcysteine (NAC). Additionally, only simultaneous inhibition of multiple caspases reduced LE-induced apoptosis. Both, a specific H 2 O 2 and an OH − scavenger (catalase and mannitol, respectively) effectively decreased LEinduced ROS production, but only partially inhibited LE-induced apoptosis. In contrast, NAC efficiently blocked both parameters. Summarizing, rapid H 2 O 2 generation and a complex caspase activation pattern contribute to the antileukemic effects of LE. As superoxide generation is
HHS Public Access
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.