Nowadays, Tumour is one of the important reasons of human death worldwide, producing about 9.6 million people in 2018. BC (breast cancer) is the common reason for cancer deaths in females. BC is a type of cancer that can be treated when detected early. The main motive of this analysis is to detect cancer early in life using ML (machine learning) techniques. The features of the people included in the WDBC (Wisconsin diagnostic breast cancer) and Coimbra BC datasets were classified by SVOF-KNN, KNN, and Naïve Bayes techniques. The pre-processing data phase was applied to the datasets before classification. After the data pre-processing steps, three classification methods were applied to the data. Specificity and Sensitivity rates were used to calculate the success of the techniques. As an outcome of the BC diagnosis classification, the SVOF-KNN technique was found with a 91 percent specificity rate and 90 percent sensitivity rate. When the outcomes attained from feature extraction and selection are calculated. It is seen that feature extraction, selection, and data pre-processing techniques improve the specificity and sensitivity rate of the detection system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.