An important class of electrokinetic, microfluidic devices aims to pump and control electrolyte working liquids that have spatial gradients in conductivity. These high-gradient flows can become unstable under the application of a sufficiently strong electric field. In many of these designs, flow channels are thin in the direction orthogonal to the main flow and the conductivity gradient. Viscous stresses due to the presence of these walls introduce a stabilizing force that plays a major role in determining the overall instability. A thin channel model for fluid flow is developed and shown to provide good agreement with a complete three-dimensional model for channel aspect ratios ≲0.1.
We investigate the stability of a thin two-dimensional liquid film when a uniform electric field is applied in a direction parallel to the initially flat bounding fluid interfaces. We consider the distinct physical effects of surface tension and electrically induced forces for an inviscid, incompressible nonconducting fluid. The film is assumed to be thin enough and the surface forces large enough that gravity can be ignored to leading order. Our aim is to analyze the nonlinear stability of the flow. We achieve this by deriving a set of nonlinear evolution equations for the local film thickness and local horizontal velocity. The equations are valid for waves which are long compared to the average film thickness and for symmetrical interfacial perturbations. The electric field effects enter nonlocally and the resulting system contains a combination of terms which are reminiscent of the Kortweg–de-Vries and the Benjamin–Ono equations. Periodic traveling waves are calculated and their behavior studied as the electric field increases. Classes of multimodal solutions of arbitrarily small period are constructed numerically and it is shown that these are unstable to long wave modulational instabilities. The instabilities are found to lead to film rupture. We present extensive simulations that show that the presence of the electric field causes a nonlinear stabilization of the flow in that it delays singularity (rupture) formation.
We consider the two-layer flow of immiscible, viscous, incompressible fluids in an inclined channel. We use long-wave theory to obtain a strongly nonlinear evolution equation which describes the motion of the interface. This equation includes the physical effects of viscosity stratification, density stratification, and shear. A weakly nonlinear analysis of this equation yields a Kuramoto–Sivashinsky equation, which possesses a quadratic nonlinearity. However, certain physical situations exist in two-layer flow for which modifications of the Kuramoto–Sivashinsky equation are physically pertinent. In particular, the presence of the second layer can mediate the wave-steepening instability found in single-phase falling films, requiring the inclusion of a cubic nonlinearity in the weakly nonlinear analysis. The introduction of the cubic nonlinearity destroys the symmetry-breaking bifurcations of the Kuramoto–Sivashinsky equation, and new isolated solution branches emerge as the strength of the cubic nonlinearity increases. Bistability between these new solutions and those associated with the Kuramoto–Sivashinsky equation is found, as well as the formation of a hysteresis loop from smaller-amplitude travelling waves to larger-amplitude travelling waves. The physical implications of these dynamics to the phenomenon of laminar flooding in a channel are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.