Indentation load relaxation (ILR) experiments with indentation depths in the submicron range are described. Under appropriate conditions, the ILR data are found to yield flow curves of the same shape as those based on conventional load relaxation data. Variations in flow properties as a function of depth in submicron metal films deposited on a hard substrate are detected by the experiments described.
Continuous indentation testing was used to measure the hardness as a function of indentation depth, of three micron thick copper films deposited on silicon with an intermediate layer of 20 nm thick chromium or titanium. Three different indenters, a nearly perfect Vickers, a Vickers with a 1.2 £im2 flat, and a Pyramid with a 25 ^.m2 flat were employed. The hardness data suggest that the titanium interlayer produced significantly greater film/substrate adhesion than the chromium interlayer. A compressive residual stress, which relaxed with time, was detected in the samples with the titanium interlayer.
Results from indentation load relaxation (ILR) tests on thin film-substrate systems are reported.In the case of a 1 pum aluminum film on silicon, the data can be interpreted as reflecting both the properties of the film and the interface between film and substrate.Data from a 3 Um TiN film on 304 SS are believed to reflect the combined behavior of the film and substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.