An outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been recognized as a global health concern. Since, no specific antiviral drug is proven effective for treatment against COVID-19, identification of new therapeutics is an urgent need. In this study, flavonoid compounds were analyzed for its inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. Virtual docking was performed for screening of flavonoid compounds retrieved from PubChem against the main protease of SARS-CoV-2 using COVID-19 docking server. The cut off of dock score was set to >-9kcal/mol and screened compounds were individually docked against main protease, RNA-dependent RNA polymerase, and spike proteins using AutoDock 4.1 software. Finally, lead flavonoid compounds were subjected to ADMET analysis. A total of 458 flavonoid compounds were virtually screened against main protease target and 36 compounds were selected based on the interaction energy value >-9kcal/mol. Furthermore, these compounds were individually docked against protein targets and top 10 lead compounds were identified. Among the lead compounds, agathisflavone showed highest binding energy value of -8.4 kcal/mol against main protease, Albireodelphin showed highest dock score of -9.8 kcal/mol and -11.2 kcal/mol against RdRp, and spike proteins, respectively. Based on the high dock score and ADMET properties, top 5 lead molecules such as Albireodelphin, Apigenin 7-(6''-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6''-O-malonate were identified as potent inhibitors against main protease, RdRp, and spike protein targets of SARS-CoV-2. These all compounds are having non-carcinogenic and non-mutagenic properties.This study finding suggests that the screened compounds include Albireodelphin, Apigenin 7-(6''-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6''-O-malonate could be the potent inhibitors of SARS-CoV-2 targets.
BackgroundThe medical application of pomegranate fruits and its peel is attracted human beings. The aim of the present study was to evaluate the in vitro α-Glucosidase inhibition, antimicrobial, antioxidant property and in vivo anti-hyperglycemic activity of Punica granatum (pomegranate) fruit peel extract using Caenorhabditis elegans.MethodsVarious invitro antioxidant activity of fruit peel extracts was determined by standard protocol. Antibacterial and antifungal activities were determined using disc diffusion and microdilution method respectively. Anti-hyperglycemic activity of fruit peel was observed using fluorescence microscope for in vivo study.ResultsThe ethyl acetate extract of P. granatum fruit peel (PGPEa) showed α-Glucosidase inhibition upto 50 % at the concentration of IC50 285.21 ± 1.9 μg/ml compared to hexane and methanol extracts. The total phenolic content was highest (218.152 ± 1.73 mg of catechol equivalents/g) in ethyl acetate extract. PGPEa showed more scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) with IC50 value 302.43 ± 1.9 μg/ml and total antioxidant activity with IC50 294.35 ± 1.68 μg/ml. PGPEa also showed a significant effecton lipid peroxidation IC50 208.62 ± 1.68 μg/ml, as well as high reducing power. Among the solvents extracts tested, ethyl acetate extract of fruit peel showed broad spectrum of antimicrobial activity. Ethyl acetate extract supplemented C.elegans worms showed inhibition of lipid accumulation similar to acarbose indicating good hypoglycemic activity. The normal worms compared to test (ethyl acetate extract supplemented) showed the highest hypoglycaemic activity by increasing the lifespan of the worms. GC-MS analysis of PGPEa showed maximum amount of 5-hydroxymethylfurfural and 4-fluorobenzyl alcohol (48.59 %).ConclusionIn the present investigation we observed various biological properties of pomegranate fruit peel. The results clearly indicated that pomegranate peel extract could be used in preventing the incidence of long term complication of diabetics.
This study was aimed to analyze the anti-cancer activity of silver nanoparticles (AgNPs) synthesized using aqueous plant extracts from the rhizome of
Curcuma longa
and
Zingiber officinale.
Synergistic aqueous extract of rhizome of
C. longa
and
Z. officinale
was used to green synthesis of AgNPs. Characterization of AgNPs was performed using UV–visible spectroscopy, FTIR, X-ray diffraction, TEM, and SEM analyses. Anti-cancer activity of AgNPs against human colon carcinoma (HT-29) cells was tested using MTT assay. UV–Visible spectroscopy analysis indicated the surface plasmon resonance (SPR) sharp peak at 350–430 nm wavelength that corresponds to the production of AgNPs. FTIR analysis reveals that existence of carboxyl (—C
O) and amine (N—H) functional groups in the AgNPs. The X-ray diffraction analysis confirms four spectral peaks at 111, 200, 220, and 311. SEM analysis showed that AgNPs are in a spherical shape with a size of 42–61 nm and TEM analysis showed particle size are ranged between 20–51 nm. Anti-cancer study reveals that AgNPs had shown cytotoxicity against HT-29 cells at the concentrations ranged from 25 to 500 μg/mL and IC
50
at 150.8 µg/mL. This study concludes that AgNPs synthesized using rhizome of
Z. officinale and C. longa
possesses potential anti-cancer activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.