The parasite Plasmodium falciparum causes severe malaria and is the most dangerous to humans. However, it exhibits resistance to their drugs. Farnesyltransferase has been identified in pathogenic protozoa of the genera Plasmodium and the target of farnesyltransferase includes Ras family. Therefore, the inhibition of farnesyltransferase has been suggested as a new strategy for the treatment of malaria. However, the exact functional mechanism of this agent is still unknown. In addition, the effect of farnesyltransferase inhibitor (FTIs) on mitochondrial level of malaria parasites is not fully understood. In this study, therefore, the effect of a FTI R115777 on the function of mitochondria of P. falciparum was investigated experimentally. As a result, FTI R115777 was found to suppress the infection rate of malaria parasites under in vitro condition. It also reduces the copy number of mtDNA-encoded cytochrome c oxidase III. In addition, the mitochondrial membrane potential (ΔΨm) and the green fluorescence intensity of MitoTracker were decreased by FTI R115777. Chloroquine and atovaquone were measured by the mtDNA copy number as mitochondrial non-specific or specific inhibitor, respectively. Chloroquine did not affect the copy number of mtDNA-encoded cytochrome c oxidase III, while atovaquone induced to change the mtDNA copy number. These results suggest that FTI R115777 has strong influence on the mitochondrial function of P. falciparum. It may have therapeutic potential for malaria by targeting the mitochondria of parasites.
Abstract.Oxygen is a key factor in aerobic reactions and most biological activities. Visualization of oxygen distribution of a chemical process or biological system has been a very challenging object despite of its significance and potential impact. To monitor and visualize the spatial distribution of oxygen concentration, various techniques such as electro-chemical probe, polarographic electrode, LIF(laser-induced fluorescence) and so on have been introduced. Oxygen planar optode which utilizes the oxygen quenching of fluorescence light is one of the currently available methods for time-resolved visualization of oxygen distribution on a planar surface. In this study, we utilized VisiSens oxygen planar optode system to visualize the spatial distribution of oxygen concentration on leaves of Korean azalea. As a result, temporal variation of oxygen concentration distribution caused by respiratory activity of the leaf could be quantitatively monitored. . 1990년대에는 산소 광소멸(oxygen quenching)을 일으 키는 발광 물질(luminophore)을 이용한 산소 평면광 센서 가 개발되었다 (3,4) . PtOEP(platinum octaethylporphyrin)와 같은 발광 물질은 접촉한 환경의 산소 농도에 따라 발광 강도(intensity)가 다르게 나타나며, 이를 촬영한 영상을 분 석하면 산소의 농도분포를 측정할 수 있다. 주로 박막 형 태의 평면에 적용 가능하다는 문제점은 있지만, 탐침 (probe)을 측정단면을 스캔시키는 전기화학적(electro-
There are many attempts to save the cost of transportation. Especially, drag reduction of heavy vehicles such as truck or tractor-trailer have enormous effect on the reduction of fuel consumption and CO2 emission, because road freight transport using heavy vehicles occupies majority in physical distribution cost.
Abstract. There have been many attempts to reduce the cost of transportation. Especially, drag reduction of heavy vehicles has enormous influence on energy saving by reducing the driving power of the vehicles. In this study, the effects of drag-reducing additive devices such as side skirt, boat tail and cab-roof fairing on the drag reduction of a 5 ton truck model were experimentally investigated. The aerodynamic performance of these flow-control devices attached to heavy vehicle was evaluated through wind tunnel test. In addition, flow patterns around the truck model were visualized by using smoke tube method. The drag coefficient is reduced by up to 5.7%, 7.16% and 22.2% by the side skirt, boat tail and cab-roof fairing, respectively. The interactive effect of the side skirt and boat tail was also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.