Brown planthopper is the most important rice pest in Indonesia. Its high adaptability to feed and reproduce on previously introduced resistant varieties to form more virulent population often causes BPH outbreak and hopperburn that lead to total crop yield loss. Rice breeding for resistant to BPH requires information on the current status of BPH virulences in the fields to anticipate the virulence adaptation on new varieties. The objectives of this study were to investigate the degree of virulence of BPH populations and to cluster the BPH virulence to form BPH core collection. Thirteen BPH populations collected from paddy fields in six provinces (Banten, West Java, Central Java, East Java, South Kalimantan, and South Sulawesi) in 2011 and 2013 were tested on 10 differential rice varieties and seven host varieties of BPH populations, using the standard seedbox screening technique. Based on resistance reaction of four differential varieties (TN1, Mudgo, ASD7, and Rathu Heenathi), most BPH populations were identified as more virulent than biotype 4 (T1, Banten, PG, West Java; BY, East Java; B2 and B3, South Kalimantan; X1 and X3, South Sulawesi), four populations were biotype 4 (JWDL, Central Java; SD, East Java; X2 and X4, South Sulawesi), and one population each was biotype 3 (T2, Banten) and biotype 2 (S1, West Java). Populations X1 and B3 showed broad virulences to all varieties, whereas T2 was the least virulent. BPH field’s population had evolved into more virulence than biotype 4. Genotype resistance screening should use the BPH of this virulence population. Five BPH clusters which were further divided into 10 subclusters representing differential virulence toward 10 differential varieties were present in the tested BPH. Each virulence cluster was characterized by its ability to overcome four to eight single or double resistant genes. This BPH virulence core collection can be used in the characterization studies of candidate for resistant varieties or to form near-isogenic lines, or to study the insect and rice plant interaction.
Application of Genetically Modified Crops: Status, Regulation, and Detection Method in Indonesia. Bahagiawati and Sutrisno. Global area of transgenic crop was increase tremendously. The number of country accepting of planting and/or marketing the transgenic crops and its derivative products also become more numberous. However, due to existing controversy on the benefit and risk, the application of transgenic crops was governed by regulations to protect the consumer and environment from its unwanted effects. There are some international conventions that managing and controlling the uses of these crops, one of them was Cartagena protocol that Indonesia ratified in 2004. Indonesia also launched a regulation upon labelling package food derived from transgenic crops in 1999. To implement either the Cartagena protocol and labelling regulation, Indonesia needs to increase its capacity to detect the present of the transgenic crop product either in raw, and proceesed food. This review will discuss about the development of the application of transgenic crop and its product globally, and list of transgenic crops that have been accepted and approved as safe for human consumption and environment. The regulations upon the application of transgenic crop in Indonesia also be informed. Some metodologies to detect the presence of the genetically modified food that are generally use in some countries also be discussed in this review.
<p>Genetically modified crops (GM crops) have developed very fast globally, although to date controversies over the GM crop uses are still occurring. GM crops have been planted on over 191.7 million hectare area and cultivated in 26 countries in five continents. Biosafety of GM crops both globally and domestically are guaranteed through regulations made at the level of law, government regulations, related ministrial regulation including the guidelines. In general, those regulations have been implemented, thus the biosafety of GM crop utilization is guaranteed in Indonesia. Unfortunately, although Indonesia gave a certification for released permit for drought tolerant sugarcane, it only grown in a limited areas belongs to state-owned agricultural company (PTPN XI). The country has certified 27, 7, and 16 GM events for food, feed, and seeds for environment safety, respectively. The implementation of these regulations needs a monitoring system that is equipped with facilities of GMO detection laboratory with adequate capacity. Indonesia has several such laboratories. The methods of GMO detections have developed from very basic techniques, i.e. qualitative screening to the determination of specific events that define the type of trait of GMO, even quantitative detection, both single and multiplex. Each method has its own advantages. The capacities of GMO detection laboratory in Indonesia still need to be upgraded to master the fast-developing technology. The purpose of this review is to provide information on the development of global GM crops utilization including in Indonesia and the development of regulations and detection methods with their prospects and challenges.</p><p>Keywords: Genetics, modification, regulation, detection methods</p><p> </p><p><strong>Abstrak</strong></p><p>Pemanfaatan tanaman produk rekayasa genetik (PRG) telah berkembang cepat dan mendunia walaupun sampai saat ini masih terjadi kontroversi. Luas penanamannya telah mencapai 191,7 juta ha dan ditanam oleh 26 negara di lima benua. Keamanan hayati PRG secara global maupun domestik telah dijamin oleh peraturan pada tingkat undang-undang, peraturan pemerintah, peraturan kementerian terkait, dan pedoman pelaksanaannya. Secara umum peraturan peraturan tersebut telah dijalankan sehingga keamanan hayati dari pemanfaatan PRG terjamin di Indonesia. Sayangnya di Indonesia PRG yang sudah diberi izin edar hanya ditanam secara terbatas seperti tebu toleran kekeringan di beberapa kebun milik PTPN. Indonesia juga telah memberikan sertifikat aman hayati pada beberapa varietas PRG diantaranya 27 PRG pangan, tujuh PRG pakan, dan 16 PRG benih (lingkungan). Implementasi peraturan yang telah ada memerlukan sistem pengawasan yang dilengkapi dengan fasilitas laboratorium deteksi PRG dengan kapasitas yang memadai. Indonesia telah mempunyai beberapa laboratorium tersebut. Metode deteksi PRG telah berkembang dari teknik yang sangat mendasar yaitu deteksi untuk skrining kualitatif PRG sampai teknik penentuan spesifik event yang menetapkan jenis/sifat PRG, bahkan teknik deteksi secara kuantitatif yang bersifat tunggal maupun multiplex. Metode-metode deteksi tersebut memiliki keunggulan masing-masing. Laboratorium penguji PRG di Indonesia masih perlu ditingkatkan kemampuannya dengan penguasaan teknologi yang berkembang dengan pesat. Makalah ini memberikan informasi perkembangan pemanfaatan PRG global termasuk di Indonesia dan perkembangan regulasi dan metode deteksi serta prospek dan tantangan.</p><p>Kata kunci: Genetika, rekayasa, regulasi, metode deteksi</p>
In some countries, including Indonesia, labelling of GMO products is mandatory for giving consumers the right to choose between GMOs and conventional products. Therefore, development of methodology that can detect a specific genetically modified (GM) crops and to verify the absence or presence of GM material in a product including raw materials (e.g. grains) and/or their derivatives is needed. The objectives of this study were to find the most efficient screening methods to detect whether or not a product is GM material and to develop a specific detection method to identify GM product BT11 and GA21. In addition, present study was also aimed to obtain a duplex detection method for both GM products. Two GM-maize, including the BT11 and GA21 lines of maize (Zea mays L.), and one plant, namely NK11 as the nontransgenic control, were used as plant genetic materials in the event-specific detection of maize. The target gene from each sample was amplified in different reaction (simplex) using both the event specific primer and the endogenous maize reference, Zein, as internal control. Furthermore, in duplex PCR, two targets were simultaneously amplified in the same reaction. The results showed that detection method of the GM product obtained from present study enabled us to screen the GM products and specifically the event of BT11 and GA21 using simplex and duplex methods. The duplex method is more efficient because it can detect two GM crops in one time compared to simplex method that only can detect GM crop one by one.Keywords: GMO detection, GMO screening, maize, BT11, GA21. ABSTRAKPelabelan produk hasil rekayasa genetika (PRG) di beberapa negara, termasuk Indonesia, merupakan mandat yang memberikan kesempatan kepada konsumen untuk mendapatkan informasi produk yang akan dibeli atau digunakan. Untuk itu, diperlukan perangkat teknologi yang dapat mendeteksi keberadaan produk PRG tersebut, baik dalam bentuk bahan dasar (bijibijian) maupun produk turunannya. Penelitian ini bertujuan membandingkan dan mendapatkan teknik yang akurat dan efisien untuk deteksi tanaman jagung BT11 dan GA21 berdasarkan teknik PCR, baik secara tunggal (simpleks) maupun ganda (dupleks). Jagung produk PRG, yaitu BT11 dan GA21, dan non-PRG, yaitu Nk11, digunakan sebagai sampel dalam pengembangan metode deteksi PRG pada kedua event tersebut. Setiap sampel diamplifikasi secara simpleks menggunakan primer spesifik untuk mendeteksi keberadaan gen target pada event PRG dan sepasang primer spesifik sebagai internal kontrol untuk tanaman jagung. Selanjutnya, pada metode dupleks, sampel DNA kedua event diamplifikasi dengan primer-primer tersebut secara bersamaan dalam suatu reaksi PCR. Hasil penelitian menunjukkan bahwa teknik deteksi yang didapatkan dari penelitian ini dapat digunakan untuk skrining PRG dan identifikasi spesifik BT11 dan GA21, baik secara simpleks maupun dupleks. Kemampuan metode dupleks untuk mendeteksi PRG akan sangat bermanfaat dalam kegiatan skrining PRG dalam jumlah sampel yang besar karena metode ini lebih efisien dibanding...
<p>Indonesia termasuk lima belas besar negara penghasil tekstil di dunia. Namun, bahan dasar industri tekstil ini, yaitu kapas, 99,5% masih diimpor, padahal lahan potensial untuk penanaman kapas terbilang cukup besar. Ada beberapa hal yang memengaruhi produksi kapas, antara lain belum tersedianya benih kapas bermutu tinggi yang tahan serangan hama dan penyakit. Teknologi rekayasa genetika telah terbukti menghasilkan benih kapas transgenik berpotensi hasil tinggi yang tahan hama utama. Pada tahun 2001&ndash;2002, Indonesia pernah menanam kapas transgenik (kapas Bt) terbatas di tujuh kabupaten di Provinsi Sulawesi Selatan. Pada waktu itu, produksi rerata kapas Bt mencapai 220% lebih tinggi daripada kapas lokal Kanesia. Namun karena beberapa hal penanaman kapas Bt dihentikan. Setelah penanaman kapas Bt terhenti selama lebih kurang 12 tahun, produksi kapas nasional tetap rendah dan cenderung menurun sehingga impor kapas terus meningkat. Kondisi yang berbeda bila dibandingkan dengan negara lain seperti India yang mengalami perkembangan pesat penanaman kapas Bt. Pada tahun 2014, India telah menjadi negara pengekspor kapas utama di dunia mengalahkan Cina dan Amerika Serikat. Berdasarkan pengalaman Indonesia menanam kapas Bt dan keberhasilan yang telah dibuktikan oleh negara lain terutama India dalam meningkatkan produksi kapas, untuk meningkatkan produksi kapas nasional, Indonesia perlu mempertimbangkan untuk menanam kembali kapas Bt di sentra produksi kapas di Indonesia. Tujuan tinjauan ini adalah memberikan informasi tentang pengalaman Indonesia menanam kapas Bt, potensi kapas Bt, dan kebijakan yang disarankan untuk meningkatkan produksi kapas nasional.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.