A B S T R A C TFinding the hidden parameters of the cardiac electrophysiological model would help to gain more insight on the mechanisms underlying atrial fibrillation, and subsequently, facilitate the diagnosis and treatment of the disease in later stages. In this work, we aim to estimate tissue conductivity from recorded electrograms as an indication of tissue (mal)functioning. To do so, we first develop a simple but effective forward model to replace the computationally intensive reaction-diffusion equations governing the electrical propagation in tissue. Using the simplified model, we present a compact matrix model for electrograms based on conductivity. Subsequently, we exploit the simplicity of the compact model to solve the ill-posed inverse problem of estimating tissue conductivity. The algorithm is demonstrated on simulated data as well as on clinically recorded data. The results show that the model allows to efficiently estimate the conductivity map. In addition, based on the estimated conductivity, realistic electrograms can be regenerated demonstrating the validity of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.