Results are presented from molecular dynamics simulations of Pb(l) nanodroplets containing dispersed Cu nanoparticles (NPs) and spreading on solid surfaces. Three-dimensional simulations are employed throughout, but droplet spreading and pinning are reduced to two-dimensional processes by modeling cylindrical NPs in cylindrical droplets; NPs have radius R_{NP}≅3nm while droplets have initial R_{0}≅42nm. At low particle loading explored here, NPs in sufficient proximity to the initial solid-droplet interface are drawn into advancing contact lines; entrained NPs eventually bind with the underlying substrate. For relatively low advancing contact angle θ_{adv}, self-pinning on entrained NPs occurs; for higher θ_{adv}, depinning is observed. Self-pinning and depinning cases are compared and forces on NPs at the contact line are computed during a depinning event. Though significant flow in the droplet occurs in close proximity to the particle during depinning, resultant forces are relatively low. Instead, forces due to liquid atoms confined between the particles and substrate dominate the forces on NPs; that is, for the NP size studied here, forces are interface dominated. For pinning cases, a precursor wetting film advances ahead of the pinned contact line but at a significantly slower rate than for a pure droplet. This is because the precursor film is a bilayer of liquid atoms on the substrate surface but it is instead a monolayer film as it crosses over pinning particles; thus, mass delivery to the bilayer structure is impeded.
Advanced micro/nano-flexible sensors, displays, electronic skins, and other related devices provide considerable benefits compared to traditional technologies, aiding in the compactness of devices, enhancing energy efficiency, and improving system reliability. The creation of cost-effective, scalable, and high-resolution fabrication techniques for micro/nanostructures built from optoelectronic materials is crucial for downsizing to enhance overall efficiency and boost integration density. The electrohydrodynamic jet (EHD) printing technology is a novel additive manufacturing process that harnesses the power of electricity to create fluid motion, offering unparalleled benefits and a diverse spectrum of potential uses for microelectronic printing in terms of materials, precision, accuracy, and cost-effectiveness. This article summarizes various applications of EHD printing by categorizing them as zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) printing materials. Zero-dimensional (quantum dot) materials are predominantly utilized in LED applications owing to their superb optoelectronic properties, high color fidelity, adjustable color output, and impressive fluorescence quantum yield. One- and two-dimensional materials are primarily employed in FET and sensor technologies due to their distinctive physical structure and exceptional optoelectronic properties. Three-dimensional materials encompass nanometals, nanopolymers, nanoglass, and nanoporous materials, with nanometals and nanopolymers finding widespread application in EHD printing technology. We hope our work will facilitate the development of small-feature-size, large-scale flexible electronic devices via EHD printing.
Aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was employed to study the distribution of barium atoms on the surfaces and in the interiors of boron carbide based nanowires. Barium based dopants, which were used to control the crystal growth, adsorbed to the surfaces of the boron-rich crystals in the form of nanometerthick surficial films (a type of surface complexion). During the crystal growth, these dopant-based surface complexions became embedded inside the single crystalline segments of fivefold boronrich nanowires collectively, where they were converted to more ordered monolayer and bilayer modified complexions. Another form of bilayer complexion stabilized at stacking faults has also been identified. Numerous previous works suggested that dopants/impurities tended to segregate at the stacking faults or twinned boundaries. In contrast, our study revealed the previously-unrecognized possibility of incorporating dopants and impurities inside an otherwise perfect crystal without the association to any twin boundary or stacking fault. Moreover, we revealed the amount of barium dopants incorporated was non-equilibrium and far beyond the bulk solubility, which might lead to unique properties.The crystal shape and growth rate of nanomaterials can often be controlled by adding a trace amount of dopants that are adsorbed on the growing surfaces to change the surface energies and kinetics. For example, prior studies showed that the formation of an impurity-based surficial "amorphous" films 1 (SAFs, as a type of surface complexions, where the term "complexion" refers to the thermodynamic equilibrium state of an interface; noting that this type of complexion is neither completely crystalline nor fully amorphous despite of being named as SAFs 1 ) -can change faceted particles into nanospheres 2 or stabilize anisotropic morphology 3 . Specifically, we have recently demonstrated that adding barium oxide as an additive along with the iron-rich catalyst can help to control the growth of B-C-O nanowires 4 and nanoplatelets 5-7 to achieve unique morphologies and high yields; here, we further demonstrated that the controlled anisotropic growth is related to the formation of barium-enriched surface complexions.In a broader context, this general method of tailoring the growth and morphology of nanomaterials via forming special interfacial adsorption structures (a.k.a. a class of 2D surface phase-like states that are called as "complexions" based on the argument that they are not Gibbs phases rigorously; see references 8,9 for the rigorous definition) is an example of complexion engineering, which refers to the use of desirable interfacial complexions to control the morphological and microstructural development and materials properties 1,8,9 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.