A single-shot measurement of terahertz electromagnetic pulses is implemented using two-dimensional electro-optic imaging with dual echelon optics. The reported embodiment produces sequentially delayed multiprobe beamlets, routinely providing a time window of >10 ps with ~25 fs temporal step sizes. Because of its simplicity and robustness, the technique is ideally suited for real-time ultrashort relativistic electron bunch characterization.
We present a single-shot, high-temporal-resolution terahertz diagnostic capable of measuring free-space far-infrared electromagnetic fields in time and space. We show that by using a chirped probe electro-optic sampling technique, in combination with a recently described interferometric retrieval algorithm [Appl. Phys. Lett. 87, 211109 (2005)], the diagnostic can provide transform-limited temporal resolution, mainly limited by the spectral bandwidth of the optical probe pulse, regardless of its chirp.
Z. P. Jiang and X. C. Zhang demonstrated a single-shot THz diagnostic based on spectral encoding of a chirped optical probe pulse [Appl. Phys. Lett. 72, 1945 (1998)]. This technique is thought to have an inherent uncertainty principle-imposed temporal resolution limitations. In this letter, we describe a method to recover the THz field without distortions, surpassing previous resolution limitations. Our approach is based on interpreting the spectral encoding experiment as in-line spectral interferometry, analogous to Gabor’s in-line spatial holography [D. Gabor, Nature (London) 161, 777 (1948)]. We recover the THz field from the interferogram and the characterized probe by using Tikhonov regularization combined with lower and upper triangular decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.