We study the classic mathematical economics problem of Bayesian optimal mechanism design where a principal aims to optimize expected revenue when allocating resources to self-interested agents with preferences drawn from a known distribution. In single parameter settings (i.e., where each agent's preference is given by a single private value for being served and zero for not being served) this problem is solved [20]. Unfortunately, these single parameter optimal mechanisms are impractical and rarely employed [1], and furthermore the underlying economic theory fails to generalize to the important, relevant, and unsolved multi-dimensional setting (i.e., where each agent's preference is given by multiple values for each of the multiple services available) [25].In contrast to the theory of optimal mechanisms we develop a theory of sequential posted price mechanisms, where agents in sequence are offered take-it-or-leave-it prices. We prove that these mechanisms are approximately optimal in single-dimensional settings. These posted-price mechanisms avoid many of the properties of optimal mechanisms that make the latter impractical. Furthermore, these mechanisms generalize naturally to multi-dimensional settings where they give the first known approximations to the elusive optimal multi-dimensional mechanism design problem. In particular, we solve multi-dimensional multi-unit auction problems and generalizations to matroid feasibility constraints. The constant approximations we obtain range from 1.5 to 8. For all but one case, our posted price sequences can be computed in polynomial time.This work can be viewed as an extension and improvement of the single-agent algorithmic pricing work of [9] to the setting of multiple agents where the designer has combinatorial feasibility constraints on which agents can simultaneously obtain each service.
We investigate the power of randomness in the context of a fundamental Bayesian optimal mechanism design problem-a single seller aims to maximize expected revenue by allocating multiple kinds of resources to "unit-demand" agents with preferences drawn from a known distribution. When the agents' preferences are single-dimensional Myerson's seminal work [14] shows that randomness offers no benefit-the optimal mechanism is always deterministic. In the multi-dimensional case, where each agent's preferences are given by different values for each of the available services, Briest et al. [7] recently showed that the gap between the expected revenue obtained by an optimal randomized mechanism and an optimal deterministic mechanism can be unbounded even when a single agent is offered only 4 services. However, this large gap is attained through unnatural instances where values of the agent for different services are correlated in a specific way. We show that when the agent's values involve no correlation or a specific kind of positive correlation, the benefit of randomness is only a small constant factor (4 and 8 respectively). Our model of positively correlated values (that we call additive values) is a natural model for unit-demand agents and items that are substitutes. Our results extend to multiple agent settings as well.
We study the design and approximation of optimal crowdsourcing contests. Crowdsourcing contests can be modeled as all-pay auctions because entrants must exert effort up-front to enter. Unlike all-pay auctions where a usual design objective would be to maximize revenue, in crowdsourcing contests, the principal only benefits from the submission with the highest quality. We give a theory for optimal crowdsourcing contests that mirrors the theory of optimal auction design: the optimal crowdsourcing contest is a virtual valuation optimizer (the virtual valuation function depends on the distribution of contestant skills and the number of contestants). We also compare crowdsourcing contests with more conventional means of procurement. In this comparison, crowdsourcing contests are relatively disadvantaged because the effort of losing contestants is wasted. Nonetheless, we show that crowdsourcing contests are 2-approximations to conventional methods for a large family of "regular" distributions, and 4-approximations, otherwise.
We present algorithms for a class of resource allocation problems both in the online setting with stochastic input and in the offline setting. This class of problems contains many interesting special cases such as the Adwords problem. In the online setting we introduce a new distributional model called the adversarial stochastic input model, which is a generalization of the i.i.d model with unknown distributions, where the distributions can change over time. In this model we give a 1 − O(ǫ) approximation algorithm for the resource allocation problem, with almost the weakest possible assumption: the ratio of the maximum amount of resource consumed by any single request to the total capacity of the resource, and the ratio of the profit contributed by any single request to the optimal profit is at mostwhere n is the number of resources available. There are instances where this ratio is ǫ 2 / log n such that no randomized algorithm can have a competitive ratio of 1 − o(ǫ) even in the i.i.d model. The upper bound on ratio that we require improves on the previous upper-bound for the i.i.d case by a factor of n.Our proof technique also gives a very simple proof that the greedy algorithm has a competitive ratio of 1 − 1/e for the Adwords problem in the i.i.d model with unknown distributions, and more generally in the adversarial stochastic input model, when there is no bound on the bid to budget ratio. All the previous proofs assume * A full version of this paper, with all the proofs, is available at http://arxiv.org † Part of this work was done while the author was at Microsoft Research, Redmond ‡ Part of this work was done while the author was at Microsoft Research, Redmond Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. EC '11, June 5-9, 2011, San Jose, California, USA. Copyright 2011 that either bids are very small compared to budgets or something very similar to this.In the offline setting we give a fast algorithm to solve very large LPs with both packing and covering constraints. We give algorithms to approximately solve (within a factor of 1 + ǫ) the mixed packing-covering problem with O() oracle calls where the constraint matrix of this LP has dimension n × m, and γ is a parameter which is very similar to the ratio described for the online setting.We discuss several applications, and how our algorithms improve existing results in some of these applications.
We study the classical problem of prediction with expert advice in the adversarial setting with a geometric stopping time. In 1965, Cover gave the optimal algorithm for the case of 2 experts. In this paper, we design the optimal algorithm, adversary and regret for the case of 3 experts. Further, we show that the optimal algorithm for 2 and 3 experts is a probability matching algorithm (analogous to Thompson sampling) against a particular randomized adversary. Remarkably, our proof shows that the probability matching algorithm is not only optimal against this particular randomized adversary, but also minimax optimal.Our analysis develops upper and lower bounds simultaneously, analogous to the primal-dual method. Our analysis of the optimal adversary goes through delicate asymptotics of the random walk of a particle between multiple walls. We use the connection we develop to random walks to derive an improved algorithm and regret bound for the case of 4 experts, and, provide a general framework for designing the optimal algorithm and adversary for an arbitrary number of experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.