COVID-19 was officially declared as a pandemic by the WHO on March 11, 2020. For COVID-19, the testing methods commonly used are the Antibody Testing and RT-PCR Testing. Both methods are considered to be the most effective in determining whether a person has been suffered from COVID-19 or not. However, alternative testing methods need to be tried. One of them is using the Convolutional Neural Network. This study aims to measure the performance of CNN in classifying x-ray image of a person’s chest to determine whether the person is suffered from COVID-19 or not. The CNN model that was built consists of 1 convolutional 2D layer, 2 activation layers, 1 maxpooling layer, 1 dropout layer, 1 flatten layer, and 1 dense layer. Meanwhile, the chest x-ray image dataset used is the COVID-19 Radiography Database. This dataset consists of 3 classes, i.e. COVID-19 class, NORMAL class, and VIRAL_PNEUMONIA. The experiments consisted of 4 scenarios and were carried out using Google Colab. Based on the experiments, the CNN model can achieve an accuracy of 98.69%, a sensitivity of 97.71%, and a specificity of 98.90%. Thus, CNN has a very good performance to classify the disease based on a person’s chest x-ray.
Measurement of synonyms can be an essential task in measuring word similarity. This work cannot be done syntactically but must dig deeper into its semantics. Semantic relations can be anything, such as synonyms, antonyms, hyponymy, homonymy, and polysemy. This research works on finding synonym values using the Second Order Co-occurrence Pointwise Mutual Information (SOC-PMI) method. The data used are 30 questions on the TOEFL exam. Each question consists of one word as a question and four reference answers as alternative answers. The results show very low accuracy (30%) since there are only 9 out of 30 answers that show the synonym. Besides, the LCS method was also tested to get a character-based similarity score. LCS method can achieve a higher similarity score of 43.33%. Finally, the idea of the hybrid method by combining character-based and semantic-based methods can be considered in longer words to produce a fairer similarity score. ABSTRAKPengukuran sinonim dapat menjadi pekerjaan yang penting dalam mengukur kemiripan kata. Pekerjaan ini tidak dapat dilakukan secara sintaksis, tetapi harus dilakukan dengan menggali lebih dalam tentang semantiknya. Hubungan semantik dapat berupa apa saja, seperti sinonim, antonim, hiponim, homonim, dan polisemi. Penelitian ini berusaha untuk menemukan nilai-nilai sinonim menggunakan metode Second Order Co-occurrence Pointwise Mutual Information (SOC-PMI). Data yang digunakan adalah 30 pertanyaan pada ujian TOEFL. Setiap pertanyaan terdiri dari satu kata sebagai pertanyaan dan empat jawaban referensi sebagai jawaban alternatif. Hasil menunjukkan nilai akurasi yang sangat rendah (30%) karena hanya ada 9 dari 30 jawaban yang benar-benar menunjukkan sinonim. Selain itu, metode LCS juga diuji untuk mendapatkan skor kemiripan berdasarkan karakternya. Metode LCS mampu mencapai skor kemiripan yang lebih tinggi yaitu 43,33%. Akhirnya, gagasan metode hybrid dengan menggabungkan metode berbasis karakter dan metode berbasis semantik semantik dapat dipertimbangkan untuk kata-kata yang lebih panjang agar menghasilkan skor kesamaan yang lebih adil.
Penulisan artikel atau publikasi ilmiah merupakan salah satu hal penting yang harus diperhatikan khususnya oleh para tenaga pendidik seperti Dosen. Beberapa masalah yang kerap dihadapi oleh Dosen diantaranya adalah masalah orisinalitas serta penyusunan referensi. Hal tersebut masih sering terjadi di lingkungan akademik karena kurangnya penguasaan dalam memanfaatkan tools yang sebenarnya akan sangat membantu meninimalisir permasalahan serupa. Sehingga perlu adanya pendampingan untuk menyelesaikan beberapa permasalahan tersebut salah satunya adalah pendampingan teknis penggunaan Aplikasi Turnitin dan Mendeley. Pendampingan ini akan diberikan kepada 2 orang staff perwakilan dari masing-masing Fakultas, serta beberapa Dosen yang ada di lingkungan Universitas Muhammadiyah Purwokerto. Pelaksanaan kegiatan pelatihan Turnitin dan Mendeley sangat membantu bagi para Dosen dan Operator ditiap Fakultas pada lingkungan Universitas Muhammadiyah Purwokerto.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.