The underlying cause of resistant hypertension after adrenalectomy for primary hyperaldosteronism remains controversial. The objective of this study was to identify preoperative factors predictive of resistant hypertension in patients after undergoing retroperitoneoscopic adrenalectomy. Between 2003 and 2009, 124 patients with unilateral aldosterone-producing adenoma or unilateral adrenal hyperplasia underwent retroperitoneoscopic adrenalectomy at our institution. Clinical and biochemical data were reviewed retrospectively at baseline and after a median follow-up time of 59.2 ± 37.2 months. Adrenalectomy cured hypertension in 68 patients (54.8%) and 43 (34.8%) had persistent hypertension that was much easier to control after surgery, whereas 13 patients (10.4%) had continued hypertension and poor blood pressure control. Multivariate regression analysis revealed that the main determinants of postoperative cure were duration of hypertension less than 5 years [odds ratio (OR): 6.515, 95% confidence interval (CI) 2.278-10.293), number of antihypertensive medications ≤2 (OR: 2.939, 95% CI 1.254-5.235), preoperative response to spironolactone (OR: 3.405, 95% CI 1.681-6.985), the TT genotype of the CYP11B2 gene (344 C/T) (OR: 2.765, 95% CI 1.221-4.986), and the presence of adenoma rather than hyperplasia (OR: 5.274, 95% CI 2.150-8.141). The main determinants of surgical cure or control of hypertension in patients with primary hyperaldosteronism were duration of hypertension, number of antihypertensive medications, preoperative response to spironolactone, the presence of adenoma, and CYP11B2 (344 C/T) genotype. Consideration of these factors may help in the evaluation of patients for surgery and for the identification of patients with continued postoperative hypertension that may require more long-term monitoring and treatment.
This is an original research of penis allotransplantation. The paper presents an experiment allogenic penis transplantation model in Beagles, with a focus on recovery of blood supply and changes in tissue architecture. Twenty adult Beagles were allocated to 10 pairs for penile transplantation. After operation, the skin and glans were observed. If adverse symptoms occurred, the transplanted penis was resected and pathologically examined. Frequency of urination, urinary stream, and patency level were recorded 7 days after transplantation. Cystourethrography was performed on Day 10. The transplanted penises were resected on Day 14 for pathological examination. The research showed that transplanted penises survived after allotransplantation, and the dogs regained urination ability. Penis autotransplantation in Beagles is feasible. This preliminary study shows a potential for application of this new procedure for penis transplantation in humans.
The aim of the present study was to explore sunitinib-induced autophagic effects and the specific molecular mechanisms involved, in vitro, using PC-3 and LNCaP human prostate cancer cell lines. Cells were exposed to escalating doses of sunitinib treatment and subsequent cell viability and cell cycle analyses were performed to evaluate the inhibitory effect of sunitinib in vitro. Immunofluorescence staining of microtubule associated protein 1A/1B-light chain 3 (LC3) puncta was employed to assess autophagy levels after sunitinib treatment. Western blot analysis was performed to evaluate variations in the levels of LC3, sequestosome-1, extracellular signal regulated kinase 1/2 (ERK1/2), mammalian target of rapamycin (mTOR), p70 ribosomal protein S6 kinase (p70S6K) and cleaved caspase-3 proteins. The present study revealed that sunitinib treatment inhibited cell growth and triggered autophagy in a dose-dependent manner in both cell lines. In addition, sunitinib activated ERK1/2 and inhibited mTOR/p70S6K signaling. Sunitinib-induced autophagy was notably reversed by ERK1/2 kinase inhibitor, U0126. Furthermore, inhibition of sunitinib-induced autophagy by 3-methyladenine enhanced apoptosis and exhibited improved cell viability, which indicated that sunitinib induces not only apoptosis but also autophagic cell death in prostate cancer cell lines. These results may lead to an improved understanding of the mechanism of sunitinib's cytotoxic action and may provide evidence that combined sunitinib autophagy-regulating treatment may be of benefit to anti-prostate cancer therapy.
Adrenocortical carcinoma (ACC) is a rare, but aggressive endocrine malignancy with a generally poor clinical outcome. There is no effective therapy for advanced and metastatic ACC. In our study, we found that an existing drug (rottlerin) exerted its tumour-suppressive function in ACC. Specifically, rottlerin inhibited cellular proliferation of ACC cell lines (NCI-H295R and SW-13) in a dose- and time-dependent manner. We also found that rottlerin induced cell apoptosis and promoted G0/G1 cell cycle arrest in ACC cell lines. The cellular migration and invasion of ACC cell lines were decreased after treatment with rottlerin. Further, the molecular expression of lipoprotein receptor related protein 6 (LRP6) and β-catenin were down-regulated in rottlerin-treated ACC cells, which indicated that Wnt/β-catenin signaling was involved in the tumour-suppressive function of rottlerin. To further confirm the anti-tumour function of rottlerin, a nude mouse ACC xenograft model was used. The xenograft growth curves and TUNEL assays demonstrated that rottlerin inhibited proliferation and induced apoptosis in the ACC xenograft model. Furthermore, we verified that rottlerin down-regulated the expression of LRP6 and β-catenin in vivo. The ACC cell line and xenograft mouse model data indicated that rottlerin significantly inhibited proliferation and induced apoptosis of ACC cells, likely via suppression of the Wnt/β-catenin signaling pathway. Our study indicated the potential therapeutic utility of rottlerin as a novel and potential chemotherapeutic agent for ACC.
n-3 polyunsaturated fatty acids (PUFAs) are essential for human health and have been reported to reduce the risk of cancer, inhibit the growth of various types of tumors both in vitro and in vivo, and affect adrenal function. However, their effects on adrenocortical carcinoma (ACC) are not known. In the present study, we demonstrated that docosahexenoic acid (DHA) inhibited ACC cell proliferation, colony formation and cell cycle progression, and promoted apoptosis. In addition, ectopic expression of fat-1, a desaturase that converts n-6 to n-3 PUFAs endogenously, also inhibited ACC cell proliferation. Moreover, supplementing n-3 PUFAs in the diet efficiently prevented ACC cell growth in xenograft models. Notably, implanted ACC cells were unable to grow in fat-1 transgenic severe combined immune deficiency mice. Further study revealed that exogenous and endogenous n-3 PUFAs efficiently suppressed both mTOR complex 1 (mTORC1) and mTORC2 signaling in ACC in vitro and in vivo. Taken together, our findings provide comprehensive preclinical evidence that n-3 PUFAs efficiently prevent ACC growth by inhibiting mTORC1/2, which may have important implications in the treatment of ACC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.