Although image inpainting based on the generated adversarial network (GAN) has made great breakthroughs in accuracy and speed in recent years, they can only process low-resolution images because of memory limitations and difficulty in training. For high-resolution images, the inpainted regions become blurred and the unpleasant boundaries become visible. Based on the current advanced image generation network, we proposed a novel high-resolution image inpainting method based on multi-scale neural network. This method is a two-stage network including content reconstruction and texture detail restoration. After holding the visually believable fuzzy texture, we further restore the finer details to produce a smoother, clearer, and more coherent inpainting result. Then we propose a special application scene of image inpainting, that is, to delete the redundant pedestrians in the image and ensure the reality of background restoration. It involves pedestrian detection, identifying redundant pedestrians and filling in them with the seemingly correct content. To improve the accuracy of image inpainting in the application scene, we proposed a new mask dataset, which collected the characters in COCO dataset as a mask. Finally, we evaluated our method on COCO and VOC dataset. the experimental results show that our method can produce clearer and more coherent inpainting results, especially for high-resolution images, and the proposed mask dataset can produce better inpainting results in the special application scene.
On the basis of the standard particle swarm optimization and the bionic theory, the standard particle swarm optimization algorithm is improved based on the biological symbiosis mechanism, and the weight selection strategy and search space of the standard particle swarm are improved. The weighted particle swarm optimization algorithm (Particle swarm optimization based on biological symbiosis mechanism and self-adaptive inertia weight, PSO-BSMSIW) has been verified by the test function, and the algorithm has significantly improved the convergence speed and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.