We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U −B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ∼40% intrinsic scatter compared to B-band.Subject headings: supernovae: general -techniques: photometric Data and Reduction DiscoveryOur program of supernova photometry consists solely of follow-up; we search only our email, not the sky, to find new supernovae. A number of observers, both amateur and professional, are engaged in searching for supernovae. We rely on these searches, as well as prompt notification of candidates, coordinated by Dan Green and Brian Marsden of the IAU's Central Bureau for Astronomical Telegrams (CBAT), with confirmed SN reported in the IAU Circulars. In some cases the SN discoverers provide spectroscopic classification of the new objects, but generally spectroscopy is obtained by others, and reported separately in the IAU Circulars. With our spectroscopic SN follow-up program at the F. L. Whipple Observatory 1.5m telescope and FAST spectrograph (Fabricant et al. 1998), we have classified a large fraction of the new, nearby supernovae reported over the last several years and compiled a large spectroscopic database (Matheson et al. 2005, in preparation).Given a newly discovered and classified supernova, several factors help determine whether or not we include it in our monitoring program. Because of their importance, SN Ia are often given higher priority over other types, but factors such as ease of observability (southern targets and those discovered far to the west are less appealing), supernova phase (objects whose spectra indicate they are after maximum light are given lower priority), redshift (more nearby objects are favored), as well as the number of objects we are already monitoring are significant. Our final sample of well-observed SN Ia is not obtained from a single well-defined set of criteria, and selection effects in both the searches and follow-up may make this sample unsuitable for some applications (such as determining the intrinsic luminosity function of SN Ia, for example). A thorough discussion of the selection biases in the Calán/Tololo supernova search and follow-up campaign can be found in Hamuy & Pinto (1999).The discovery data for the sample of SN Ia presented here are given in Table 1. All of the ...
The objective of the present study was to determine the occurrence and endocrine effects of agrichemicals in four Nebraska, USA, watersheds--the Elkhorn, Platte, Niobrara, and Dismal rivers. Land use in the Elkhorn River and Platte River watersheds is characterized by intense agriculture, including row crop and beef cattle production. In contrast, land within the Niobrara River and Dismal River watersheds consists primarily of grasslands. Polar organic chemical integrative samplers (POCIS) and caged fathead minnows were deployed at a site within each watershed for 7 d. The POCIS were analyzed for pesticides and hormones, while the caged minnows were analyzed for the expression of estrogen- and androgen-responsive genes. Amounts of pesticides recovered in POCIS extracts from the Elkhorn and Platte rivers were higher than those recovered from the Niobrara and Dismal rivers. Furthermore, female minnows deployed in the Elkhorn River experienced significant reductions in expression of two estrogen-responsive genes (vitellogenin and estrogen receptor α) relative to females deployed at the other sites, indicating alterations in endocrine function. However, the defeminization of these females could not be definitely linked to any of the agrichemicals detected in the POCIS recovered from the Elkhorn River.
Graphical systems models are powerful tools that can help facilitate hypothesis-driven ecotoxicogenomic research and aid in mechanistic interpretation of results. This paper describes a novel graphical model of the teleost brain-pituitary-gonadal (BPG) axis designed for ecotoxicogenomics research on endocrine-disrupting chemicals using small fish models. The model incorporates six compartments representing the major organs involved in the fish reproductive axis and depicts the interactions of over 105 proteins and 40 simple molecules, transcriptional regulation of 25 genes, and over 300 different reactions/ processes. Application of the model is illustrated in the context of a study examining effects of the competitive aromatase inhibitor, fadrozole, on gene expression in gonad, brain, and liver tissue of fathead minnows. Changes in mRNA transcript abundance were measured using a fathead minnow oligonucleotide microarray and quantitative real-time polymerase chain reaction. Gene expression changes observed in the ovaries of females exposed to 6.3 microg fadrozole/L for7 d were functionally consistent with fadrozole's mechanism of action, and expected compensatory responses of the BPG axis to fadrozole's effects. Furthermore, microarray results helped identify additional elements (genes/ proteins) that could be included in the model to potentially increase its predictive capacity. With proper recognition of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.