Firefighters' skin may be exposed to chemicals via permeation/penetration of combustion byproducts through or around personal protective equipment (PPE) or from the cross-transfer of contaminants on PPE to the skin. Additionally, volatile contaminants can evaporate from PPE following a response and be inhaled by firefighters. Using polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) as respective markers for non-volatile and volatile substances, we investigated the contamination of firefighters' turnout gear and skin following controlled residential fire responses. Participants were grouped into three crews of twelve firefighters. Each crew was deployed to a fire scenario (one per day, four total) and then paired up to complete six fireground job assignments. Wipe sampling of the exterior of the turnout gear was conducted pre- and post-fire. Wipe samples were also collected from a subset of the gear after field decontamination. VOCs off-gassing from gear were also measured pre-fire, post-fire, and post-decon. Wipe sampling of the firefighters' hands and neck was conducted pre- and post-fire. Additional wipes were collected after cleaning neck skin. PAH levels on turnout gear increased after each response and were greatest for gear worn by firefighters assigned to fire attack and to search and rescue activities. Field decontamination using dish soap, water, and scrubbing was able to reduce PAH contamination on turnout jackets by a median of 85%. Off-gassing VOC levels increased post-fire and then decreased 17-36 min later regardless of whether field decontamination was performed. Median post-fire PAH levels on the neck were near or below the limit of detection (< 24 micrograms per square meter [µg/m]) for all positions. For firefighters assigned to attack, search, and outside ventilation, the 75 percentile values on the neck were 152, 71.7, and 39.3 µg/m, respectively. Firefighters assigned to attack and search had higher post-fire median hand contamination (135 and 226 µg/m, respectively) than other positions (< 10.5 µg/m). Cleansing wipes were able to reduce PAH contamination on neck skin by a median of 54%.
There is a high incidence of cardiovascular disease and certain cancers in firefighters that may be related to their occupational exposure to hazardous substances. Exposure may result from contaminated personal protective gear, as well as from direct exposure at fire scenes. This study characterized flame-retardant contamination on firefighter personal protective clothing to assess exposure of firefighters to these chemicals. Samples from used and unused firefighter protective clothing, including gloves, hoods and a coat wristlet, were extracted with methylene chloride and analyzed by EPA method 8270D Specific Ion Method (SIM) for polybrominated diphenyl ethers (PBDEs). Until recently PBDEs were some of the most common flame-retardant chemicals used in the US. Fifteen of the seventeen PBDEs for which analysis was performed were found on at least one clothing swatch. Every clothing sample, including an unused hood and all three layers of an unused glove, held a detectable concentration of at least one PBDE. These findings, along with previous research, suggest that firefighters are exposed to PBDE flame retardants at levels much higher than the general public. PBDEs are found widely dispersed in the environment and still persist in existing domestic materials such as clothing and furnishings. Firefighter exposure to flame retardants therefore merits further study.
Chemical exposures may be responsible for firefighters' elevated incidences of cancer and cardiovascular disease. This study characterized semivolatile chemical contamination on firefighter personal protective clothing to assess exposure of firefighters to these chemicals. Samples from used firefighter protective clothing, including gloves, hood, and one coat wristlet, were extracted with methylene chloride and analyzed by EPA method 8270 for semivolatile contaminants, including 20 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalate diesters. Twenty-two of the chemicals of interest were found on at least one clothing swatch. Only di-(2-ethylhexyl) phthalate (DEHP), a plasticizer, added to polyvinyl chloride (PVC) to increase flexibility, was found on every swatch. DEHP concentrations were the highest of any chemical measured, and were 52 to 875 times higher than any PAH concentration measured. DEHP was also detected on most items of unused firefighter personal protective clothing, although at much lower levels. These findings suggest that firefighters are exposed to high levels of DEHP, a probable human carcinogen, and at levels much higher than PAHs, the semivolatile toxic combustion products most extensively studied historically. Firefighter exposure to DEHP and other phthalate diesters therefore merits further study.
A new technique has been developed for measurement of the potential energy vs. separation between a spherical particle of colloidal dimensions and another object separated by several Debye lengths of electrolyte solution. Previous techniques for direct measurement of colloidal forces have been restricted to the interaction of objects at least 1000 times larger than colloidal size. In this new technique, the potential energy profile is deduced from the distribution of elevations sampled by a single sphere above a flat plate, after the sphere has settled to the vicinity of the plate. The instantaneous elevation is determined by measuring its speed in linear shear flow. This method has been used to measure the potential energy profile for a polystyrene latex sphere interacting with a glass plate. The preliminary results reported here suggest that a hydrodynamic repulsion, which is not of inertial origin, arises between the sphere and the plate in addition to double-layer repulsion.
BACKGROUND: In the United States, over 50% of the deaths of on-duty firefighters are classified as sudden cardiac deaths. A holistic view of the multiple risk factors and their relation to the prevalence of cardiovascular disease (CVD) is necessary to determine a baseline for prevention. METHODS: This study surveyed 154 firefighters in a large Midwestern county about their individual exposure to particulates, noise, heat stress, skin contamination, and physical stress; lifestyle factors such as exercise, diet, smoking, and alcohol consumption; health status; and demographic factors. RESULTS: Consumption of whole grains and alcohol were associated with a reduction of the risk of heart disease, while higher Body Mass Index (BMI) scores and increasing age were associated with increased risk of heart disease. CONCLUSIONS: Although firefighters are exposed to substantial occupational risks, only lifestyle factors were found to significantly predict CVD and related health issues. BMI is a modifiable risk factor, which, if controlled, could appreciably improve health outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.