Cancer cells perform their malicious activities through own cell membranes that screen and transmit inhibitory and stimulatory signals out of the cells and into them. This work is focused on changes of phospholipids content (PI-phosphatidylinositol, PS-phosphatidylserine, PE-phosphatidylethanolamine, PC-phosphatidylcholine) and electric charge that occur in cell membranes of colorectal cancer of pT 3 stage, various grades (G2, G3) and without/with metastasis. Qualitative and quantitative composition of phospholipids in the membrane was determined by HPLC (high-performance liquid chromatography). The surface charge density of colorectal cancer cell membranes was measured using electrophoresis. The measurements were carried out at various pH of solution. It was shown that the process of cancer transformation was accompanied by an increase in total amount of phospholipids as well as an increase in total positive charge at low pH and total negative charge at high pH. A malignant neoplasm cells with metastases are characterized by a higher PC/PE ratio than malignant neoplasm cells without metastases.
Phospholipids are ubiquitous in nature and are essential for the lipid bilayer of cell membranes. Their structural and functional properties are pivotal for the survival of the cell. In this study the phospholipids of healthy and cancerous human renal tissues from the same patients are compared with special reference to the electric charge of the membrane. A simple and highly effective normal-phase method is described for analyzing phospholipids content. This work is focused on changes of phospholipids content (PtdIns, phosphatidylinositol; PtdSer, phosphatidylserine; PtdEtn, phosphatidylethanoloamine; PtdCho, phosphatidylcholine) in cell membranes of renal cancer of pT1 stage, G2 grade, without metastasis. Surface charge density of healthy and cancerous human renal tissues was measured by electrophoresis. The measurements were carried out at various pH of solution. Depending on the surface charge density as a function of pH, acidic (CTA) and basic (CTB) functional group concentrations and their average association constants with hydrogen (KAH) or hydroxyl (KBOH) ions were evaluated. The process of cancer transformation was accompanied by an increase in total amount of phospholipids as well as an increase in CTA and KBOH, whereas KAH and CTB were decreased compared with unchanged tumor cells.
Phenomena associated with changes in cell membranes are thought to play an important role in the cancer transformation. We hypothesized that the electrical charge of tumor cells can indirectly represent membrane-based changes that have occurred during cell transformation and may indicate tumor cell status. Here, we describe work showing that phospholipids, proteins content, and electric charge, are all altered in the cell membranes of pT2 stage/grade G3 bladder cancer. Qualitative and quantitative phospholipid composition and the presence of integral membrane proteins were identified using high-performance liquid chromatography. Protein composition was determined using selective hydrolysis of isolated bladder cell membrane proteins and peptide resolution. The surface charge density of human bladder cell membranes was determined using electrophoresis. Our results show that cancer transformation is associated with increased phospholipid levels and a decreased level of integral proteins. Moreover, the process of cancer transformation significantly enhanced changes in the surface charge density of the human bladder cell membrane. In conclusion, this study demonstrates that cell membrane structure and function are modified in bladder cancer cells and that further work in this area is warranted.
Polyunsaturated free fatty acids (PUFAs) participate in normal functioning of the cell, particularly in control intracellular cell signalling. As nutritional components they compose a human diet with an indirect promoting influence on tumourogenesis. The PUFAs level depends on the functional state of the membrane. This work is focused on changes only of free unsaturated fatty acids amount (AA - arachidonic acid, LA - linoleic acid, ALA - alpha-linolenic acid, palmitoleic acid (PA) and oleic acid) in cell membranes of colorectal cancer of pT3 stage, G2 grade without metastasis. Qualitative and quantitative composition of free unsaturated fatty acids in the membrane was determined by high-performance liquid chromatography. It was shown that the malignant transformation was accompanied by a decrease in amount of LA and ALA while arachidonic and oleic acids increased. It is of interest that free AA levels are elevated in colon cancer, as AA is the precursor to biologically active eicosanoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.