Field observations and consecutive modelling of soil erosion events proved to be essential for understanding and predicting erosion and sediment transport. An experimental approach often utilizes a large variety of rainfall simulators. In this technical note a complex methodology is introduced, using a mobile rainfall simulator developed at the Czech Technical University in Prague. An experimental setup with two watered plots (16 + 1 m 2 ) was established, which enables simultaneous measurements in two scales and monitoring of surface runoff, flow velocity, infiltration, sediment subsurface flow, vegetation cover effect suspended solids and phosphorus transport, surface roughness and surface evolution under rainfall and other variables. The simulator is built on a trailer transportable by car with folding arm carrying four FullJet WSQ nozzles operating independently. The configuration and water pressure 0.7 bar leads to the total watered area 2.4 x 9.6 m. Average drop size (d50) reaches 1.75 mm for 0.7 bar pressure. Christiansen uniformity index CU reaches 85%. A selection of experimental results highlights both the advantages and the weaknesses of the presented experimental setup.
Accelerated soil erosion by water has many offsite impacts on the municipal infrastructure. This paper discusses how to easily detect potential risk points around municipalities by simple spatial analysis using GIS. In the Czech Republic, the WaTEM/SEDEM model is verified and used in large scale studies to assess sediment transports. Instead of computing actual sediment transports in river systems, WaTEM/SEDEM has been innovatively used in high spatial detail to define indices of sediment flux from small contributing areas. Such an approach has allowed for the modeling of sediment fluxes in contributing areas with above 127,484 risk points, covering the entire Czech Republic territory. Risk points are defined as outlets of contributing areas larger than 1 ha, wherein the surface runoff goes into residential areas or vulnerable bodies of water. Sediment flux indices were calibrated by conducting terrain surveys in 4 large watersheds and splitting the risk points into 5 groups defined by the intensity of sediment transport threat. The best sediment flux index resulted from the correlation between the modeled total sediment input in a 100 m buffer zone of the risk point and the field survey data (R2 from 0.57 to 0.91 for the calibration watersheds). Correlation analysis and principal component analysis (PCA) of the modeled indices and their relation to 11 lumped characteristics of the contributing areas were computed (average K-factor; average R-factor; average slope; area of arable land; area of forest; area of grassland; total watershed area; average planar curvature; average profile curvature; specific width; stream power index). The comparison showed that for risk definition the most important is a combination of morphometric characteristics (specific width and stream power index), followed by watershed area, proportion of grassland, soil erodibility, and rain erosivity (described by PC2).
This paper presents a newly-derived method for directly determining the amount of transported dissolved phosphorus by water erosion. The results of the method are compared to prediction based on enrichment ratio (as proposed by Sharpley) and average share of dissolved phosphorus (DP) in total transported phosphorus (5%) that is widely used in the Czech Republic. Four study areas (catchments of dozens of sq. kilometer) were chosen for their different characteristics (land use, average slope, average elevation, phosphorus concentration in the soil) which influence their rainfall-runoff behavior. The modeled results are compared with data measured in situ. The two methods provide similar results in intensively agriculturally used regions. Agreement among the methods was observed for three study areas with significant erosion intensity (above 4 t/ha/year). In the catchment with significantly lower erosion intensity (0.5 t/ha/year), the indirect method (Sharpley) underestimates the amount of DP transported in the watercourses. The sum of transports of suspended solids into watercourses and the average available phosphorus content in the soil determined by the Mehlich 3 method (P) are the main factors influencing the results provided by the two methods. An analysis of the impact of these factors on the difference between the results of the methods was provided. Transport of suspended solids is related to the method difference (R range from 0.37 to 0.71). However, no significant relationship was found between the difference in the results and the average P content in the soil (R range from 0.15 to 0.36).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.