We investigate Early Hybrid Automatic Repeat reQuest (E-HARQ) feedback schemes enhanced by Machine Learning techniques as possible path towards ultra-reliable and low-latency communication (URLLC). To this end we propose Machine Learning methods to predict the outcome of the decoding process ahead of the end of the transmission. We discuss different input features and classification algorithms ranging from traditional methods to newly developed supervised autoencoders and their prospects of reaching effective block error rates of 10 −5 that are required for URLLC with only small latency overhead. We provide realistic performance estimates in a system model incorporating scheduling effects to demonstrate the feasibility of E-HARQ across different signal-to-noise ratios, subcode lengths, channel conditions and system loads.
5G is envisioned to support three broad categories of services: eMBB, URLLC, and mMTC. URLLC services refer to future applications which require reliable data communications from one end to another, while fulfilling ultra-low latency constraints. In this paper, we highlight the requirements and mechanisms that are necessary for URLLC in LTE. Design challenges faced when reducing the latency in LTE are shown. The performance of short processing time and frame structure enhancements are analyzed. Our proposed DCI Duplication method to increase LTE control channel reliability is presented and evaluated. The feasibility of achieving low latency and high reliability for the IMT-2020 submission of LTE is shown. We further anticipate the opportunities and technical design challenges when evolving 3GPP's LTE and designing the new 5G NR standard to meet the requirements of novel URLLC services.
The authors have performed 60 GHz wideband channel measurements in Berlin to gain knowledge on millimeter-wave outdoor propagation in dense urban environments. In this paper first results for a street canyon are presented, focusing on path loss analysis of the line-of-sight-dominant small-cell access channel. They reveal that the local area path loss is very close to free-space propagation. Reflected paths do not contribute significantly to the received power as long as the line of sight (LOS) is unobstructed. However, they are usually strong enough to maintain a link if the LOS is blocked. The dominant multipath contributions can also be predicted by ray tracing simulations, though further calibration is needed to accurately determine their strength
In order to support the development of channel models for higher frequency bands, multiple urban microcellular measurement campaigns have been carried out in Berlin, Germany, at 60 and 10 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL) and the delay spread (DS). It reveals that the ground reflection has a dominant impact on the fading behavior. For line-of-sight conditions, the PL exponents are close to free space propagation at 60 GHz, but slightly smaller (1.62) for the street canyon at 10 GHz. The DS shows a clear dependence on the scenario (median values between 16 and 38 ns) and a strong distance dependence for the open square and the wide street canyon. The dependence is less distinct for the narrow street canyon with residential buildings. This behavior is consistent with complementary ray tracing simulations, though the simplified model tends to overestimate the DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.