Endothelial cell protein C receptor (EPCR) enhances the generation of activated protein C (APC) by the thrombin-thrombomodulin complex. A soluble form of EPCR (sEPCR), which is generated by metalloprotease activity, is present in plasma. The distribution of sEPCR levels in healthy populations is bimodal. Previously, we described two polymorphisms in exon 4 of the EPCR gene, 4600A/G that encodes the substitution of Ser219 by Gly in the transmembrane region of EPCR and 4678G/C in the 3'-UT region. The aim of this study was to investigate the relationship between these two polymorphisms and plasma sEPCR and APC levels and risk of venous thrombosis. We genotyped 401 healthy controls from the Spanish population and measured their plasma sEPCR and APC levels. Carriers of the 4600AG genotype had significantly higher sEPCR levels than those with the AA genotype, while the 4678CC genotype was associated, to a lesser extent, with elevated APC levels. To assess the effect of these polymorphisms on the risk of thrombosis, we genotyped 405 patients with venous thromboembolism. The frequency of the 4600AG genotype was very similar in patients and controls (p=0.975), whereas the 4678CC genotype was significantly more frequent in controls than in patients (p=0.008). In multivariate analysis, carriers of the 4678CC genotype had a decreased risk of thrombosis (OR=0.61, p=0.009). These data indicate that individuals carrying the 4600AG genotype have high sEPCR levels but do not have an increased risk of thrombosis, whereas individuals carrying the 4678CC genotype have higher APC levels and lower risk of venous thromboembolism.
This study reports on the frozen stability of all commonly measured coagulation proteins in normal citrated plasma: activated partial thromboplastin time, prothrombin time (%), thrombin time and fibrinogen (Clauss); clotting assays for factors II, V, VII, VIII, IX, X, XI and XII; functional assays for protein C (clotting), protein S (clotting), antithrombin (chromogenic) and plasminogen (chromogenic); and immunological assays for von Willebrand factor and D-dimer. All these factors listed are stable for up to 3 months if frozen at -24 degrees C or lower. At -74 degrees C, all these factors (allowing for 10% variation) were stable for at least 18 months, most were stable for 24 months. The number of proteins showing > 5% variation over baseline after 6 months storage indicates that some decay does occur even at -74 degrees C. There was no clear advantage in snap freezing at -74 degrees C and then storing at -24 degrees C over both freezing and storing at -24 degrees C; therefore, the freezing process itself is not responsible for the loss of stability. The best stability, especially at -24 degrees C, was obtained when small samples (1 ml) were stored in screw-cap tubes with a minimum dead space. The decrease in stability of the coagulation proteins directly correlates with the effect of temperature and time.
SummaryThe monoclonal antibody RFF-VIII:R/1 recognises an epitope on von Willebrand factor involved in its interaction with GPIbα. A two-site, solid phase ELISA has been established using RFF-VIII:R/1 as the solid-phase, capture antibody and an enzyme-conjugated, polyclonal antibody to human VWF, which provides an assay for VWF functional activity with a detection limit of 0.5 U/dl VWF and an interassay %CV<10. Plasma from 192 VWD patients (48 studied retrospectively; 144 prospectively) showed VWF levels of <50 U/dl in type 1 patients (n = 156), <25 U/dl in type 2A (n = 26) and <35 U/dl in type 2B (n = 8) which, in type 1 and 2A patients, correlated with RiCoF activity (r >0.82). In plasma from patients with type 1 VWD values of VWF in the Mab-based ELISA were similar to levels of VWF:Ag measured in a polyclonal antibody-based ELISA (r >0.87) but were significantly lower than VWF:Ag in type 2A and 2B plasmas (p <0.0005), allowing discrimination of variant VWD. The Mab-based ELISA has advantages of sensitivity and reproducibility over the RiCoF assay to measure VWF activity and can be used to analyse stored samples. In conjunction with an ELISA for VWF:Ag and VWF multimer analysis, it provides a reliable method, for the laboratory diagnosis of VWD.
The endothelial protein C receptor (EPCR) facilitates protein C activation and plays a protective role in the response to Escherichia coli-mediated sepsis in primates. Previously, a soluble form of EPCR (sEPCR) in human plasma was characterized, and several studies indicated that generation of sEPCR is regulated by inflammatory mediators, including thrombin-mediated up-regulation of surface metalloproteolytic activity in vitro. This study addressed the question of whether plasma sEPCR levels reflect changes in thrombin generation in patients undergoing anticoagulant treatment. The sEPCR levels in patients treated with coumarintype oral anticoagulants were significantly lower than those in healthy asymptomatic adult volunteers (105.3 ؎ 70.8 ng/mL [n ؍ 55] versus 165.8 ؎ 115.8 ng/mL [n ؍ 200]; P < .0001). A similar decline in plasma sEPCR levels was found in patients treated with unfractionated heparin. In healthy volunteers, sEPCR levels declined to about 100 ng/mL within 3 days after initiation of an 8-day period of warfarin administration and increased within 2 days after its cessation. Plasma sEPCR levels returned to pretreatment values within 1 week, and the changes in plasma sEPCR levels mirrored changes in values for international normalized ratios. A similar decline in sEPCR levels with time was observed in 7 patients beginning treatment with warfarin for a thrombotic disorder. Prothrombin fragment 1 ؉ 2 levels also decreased in volunteers and patients given warfarin. These results show that plasma sEPCR levels decline in response to treatment with anticoagulants whose mechanism of action is known to decrease in vivo thrombin production. (Blood. 2002;99:526-530)
Antithrombin (AT), in the presence of heparin, is able to inhibit the catalytic activity of factor VIIa bound to tissue factor (TF) on cell surfaces. The clinical meaning of FVIIa-AT complexes plasma levels is unknown. It was the objective of this study to evaluate FVIIa-AT complexes in subjects with thrombosis. Factor VIIa-AT complexes plasma levels in 154 patients consecutively referred to our Department with arterial or venous thrombosis and in a group of 154 healthy subjects, were measured. Moreover, FVIIa-AT complexes were determined in: i) n = 53 subjects belonging to 10 families with inherited factor VII deficiency; ii) n = 58 subjects belonging to seven families with AT deficiency; iii) n = 49 patients undergoing oral anticoagulant therapy (OAT). Factor VIIa-AT levels were determined by a specific ELISA kit (R&D, Diagnostica Stago, Gennevilliers, France). Factor VIIa-AT complexes mean plasma levels were lower in patients with either acute arterial (136 +/- 40 pM) or venous (142 +/- 53 pM) thrombosis than subjects with previous thrombosis (arterial 164 +/- 33 pM and venous 172 +/- 61 pM, respectively) and than healthy controls (156 +/- 63 pM). Differences between acute and previous thrombosis, were statistically significant (p < 0.05). Subjects with inherited and acquired (under OAT) factor VII deficiency had statistically significant lower FVIIa-AT complexes plasma levels (80 +/- 23 pM and 55 +/- 22 pM, respectively) than controls (150 +/- 51 pM, p < 0.0001 and 156 +/- 63 pM, p < 0.00001, respectively). Factor VIIa-AT complexes are positively correlated with plasma factor VII/VIIa levels. Further investigations are needed to verify the possible role of higher FVIIa-AT complex plasma levels in predicting hypercoagulable states and thrombosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.