Cinematographic shot classification assigns a category to each shot either on the basis of the field size or on the movement performed by the camera. In this work, we focus on the camera field of view, which is determined by the portion of the subject and of the environment shown in the field of view of the camera. The automation of this task can help freelancers and studios belonging to the visual creative field in their daily activities. In our study, we took into account eight classes of film shots: long shot, medium shot, full figure, american shot, half figure, half torso, close up and extreme close up. The cinematographic shot classification is a complex task, so we combined state-of-the-art techniques to deal with it. Specifically, we finetuned three separated VGG-16 models and combined their predictions in order to obtain better performances by exploiting the stacking learning technique. Experimental results demonstrate the effectiveness of the proposed approach in performing the classification task with good accuracy. Our method was able to achieve 77% accuracy without relying on data augmentation techniques. We also evaluated our approach in terms of f1 score, precision, and recall and we showed confusion matrices to show that most of our misclassified samples belonged to a neighboring class.
In recent years, the number and heterogeneity of large scientific datasets have been growing steadily. Moreover, the analysis of these data collections is not a trivial task. There are many algorithms capable of analyzing large datasets, but parameters need to be set for each of them. Moreover, larger datasets also mean greater complexity. All this leads to the need to develop innovative, scalable, and parameter-free solutions. The goal of this research activity is to design and develop an automated data analysis engine that effectively and efficiently analyzes large collections of text data with minimal user intervention. Both parameter-free algorithms and self-assessment strategies have been proposed to suggest algorithms and specific parameter values for each step that characterizes the analysis pipeline. The proposed solutions have been tailored to text corpora characterized by variable term distributions and different document lengths. In particular, a new engine called ESCAPE (enhanced self-tuning characterization of document collections after parameter evaluation) has been designed and developed. ESCAPE integrates two different solutions for document clustering and topic modeling: the joint approach and the probabilistic approach. Both methods include ad hoc self-optimization strategies to configure the specific algorithm parameters. Moreover, novel visualization techniques and quality metrics have been integrated to analyze the performances of both approaches and to help domain experts interpret the discovered knowledge. Both approaches are able to correctly identify meaningful partitions of a given document corpus by grouping them according to topics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.