The paper is focused on the kinematic, dynamic and power consumption analysis of the constructed prototype of the hexapod robot walking with tripod gait on a flat and hard ground. The movements of the robot legs are controlled by different well known oscillators working as central pattern generators (CPGs). The mentioned models, as well as those proposed in our previous paper, are employed and compared from the viewpoint of fluctuations of the robot gravity center both in vertical and movement direction, contact forces between the robot legs and the ground as well as energy demand of the whole robot during walking process. Time histories of the key kinematic and dynamic quantities describing locomotion of the robot are numerically studied and experimentally verified. Power consumption of the whole robot is experimentally investigated based on the current consumption in the applied servo motors which drive the robot legs. We show that the proposed CPG model is more efficient regarding acceleration/deceleration of the whole robot, contact forces and overload acting on the robot legs as well the energy demand during walking of the robot. The appropriate choice of the robot leg movements, depending on the actual situation, can have a positive influence on the investigated issues, i.e. avoid unnecessary acceleration/deceleration of the robot, decrease the contact forces between the legs and the ground and reduce energy demand of the whole robot. Consequently, it also allows to improve structural stability of the robot during walking process.
In the paper the control problem of the six-legged walking robot is studied. In order to find the relationship between commonly used by insects gaits (trajectory of the foot point) and stable trajectory of mechanical systems, at first we analyse various previous papers and the gaits of the real insects. For control the motion of the tip of the robot leg a nonlinear mechanical oscillator describing stick-slip induced vibrations further referred as central pattern generator (CPG) has been proposed. The advantages of the proposed model has been presented and compared with other previous applied mechanical oscillators. The possibility of control of the tip of the robot leg via changing parameters characterized oscillator working as a CPG has been discussed. Time series of the joints and configurations of the robot leg during walking are presented. The obtained numerical solutions indicate some analogies between the characteristics of the simulated walking robot and animals found in nature. Moreover, some aspects of an energy efficiency analysis (in order to reduce the energy costs) are discussed for the analysed system and the whole hexapod robot. In particular, we discuss the interplay of the proposed gait patterns and the system energy cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.