Natural products have been the center of attraction ever since they were discovered. Among them, plant-based natural products were popular as analgesics, anti-inflammatory, antidiabetic, and cosmetics and possess widespread biotechnological applications. The use of plant products as cosmetics and therapeutics is deep-rooted in Nepalese society. Although there are few ethnobotanical studies conducted, extensive research of these valuable medicinal plants has not been a priority due to the limitation of technology and infrastructure. Here, we selected 4 traditionally used medicinal plants to examine their bioactive properties and their enzyme inhibition potential. α-Glucosidase and α-amylase inhibitory activities were investigated using an in vitro model followed up by antioxidant and antimicrobial activities. The present study shows that ethyl acetate fraction of Melastoma melabathrium (IC50 9.1 ± 0.3 µg/mL) and water fraction Acacia catechu (IC50 9.0 ± 0.6 µg/mL) exhibit strong α-glucosidase inhibition. Likewise, the highest α-amylase inhibition was shown by crude extracts of Ficus religiosa (IC50 29.2 ± 1.2 µg/mL) and ethyl acetate fractions of Shorea robusta (IC50 69.3 ± 1.1 µg/mL), and the highest radical scavenging activity was shown by F. religiosa with an IC50 67.4 ± 0.6 µg/mL. Furthermore, to identify the metabolites within the fractions, we employed high-resolution mass spectrometry (LC-HRMS) and annotated 17 known metabolites which justify our assumption on activity. Of 4 medicinal plants examined, ethyl acetate fraction of S. robusta, ethyl acetate fraction of M. melabathrium, and water or ethyl acetate fraction of A. catechu extracts illustrated the best activities. With our study, we set up a foundation that provides authentic evidence to the community for use of these traditional plants. The annotated metabolites in this study support earlier experimental evidence towards the inhibition of enzymes. Further study is necessary to explore the clinical efficacy of these secondary molecules, which might be alternatives for the treatment of diabetes and pathogens.
Diabetes is a metabolic disorder of high blood sugar levels which leads to various chronic health-related complications. The digestive enzymes α-amylase and α-glucosidase play a major role in the hydrolysis of starch to glucose; hence, inhibiting these enzymes is considered an important strategy for the treatment of diabetes. Medicinal plants such as Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica are commonly used in traditional remedies due to their numerous health benefits. This study aimed to determine the phytochemicals as well as TPC and TFC contents in these plant extracts along with their antioxidant and enzyme inhibitory activity against α-glucosidase and α-amylase. The ethyl acetate extracts of selected plants have shown higher TPC and TFC contents. The aqueous extract of B. ciliata (IC50: 16.99 ± 2.56 μg/mL) and ethyl acetate extract of P. emblica (IC50: 11.98 ± 0.36 μg/mL) and M. pudica (IC50: 21.39 ± 3.76 μg/mL) showed effective antioxidant activities. Furthermore, ethyl acetate extract of B. ciliata showed significant inhibitory activity against α-amylase and α-glucosidase with IC50 values of 38.50 ± 1.32 μg/mL and 3.41 ± 0.04 μg/mL, respectively. Thus, secondary metabolites of these medicinal plants can be repurposed as effective inhibitors of digestive enzymes.
Globally, obesity is a serious health concern that causes numerous diseases, including type 2 diabetes, hypertension, cardiovascular diseases, etc. Medicinal plants have been used to aid in weight loss since ancient times. Thus, this research is focused on the exploration of pancreatic lipase inhibitory activity and secondary metabolite profiling of Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica, selected based on an ethnobotanical survey. The lipase inhibition was investigated using 4-nitrophenyl butyrate (p-NPB) as a substrate. To uncover further therapeutic potentials of these medicinal plants, antimicrobial activity and minimum inhibitory concentration (MIC) of the extracts were also determined. The ethyl acetate plant extracts showed higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella typhi, and Shigella sonnei. The MIC of ethyl acetate extracts of medicinal plants considered in this study ranges from 1.56 to 6.25 mg/mL. The hexane fraction of Mimosa pudica and Phyllanthus emblica showed a higher lipase inhibitory activity as compared to others, with IC50 values of 0.49 ± 0.02 and 2.45 ± 0.003 mg/mL, respectively. In the case of Bergenia ciliata, the methanolic extract inhibited lipase more effectively than others, with an IC50 value of 1.55 ± 0.02 mg/mL (IC50 value of orlistat was 179.70 ± 3.60 µg/mL). A mass spectrometry analysis of various solvent/solvent partition fractions (extracts) revealed 29 major secondary metabolites. The research offers a multitude of evidence for using medicinal plants as antiobesity and antimicrobial agents.
Background:The increasing frequency of diabetes patients and the reported side effects of commercially available anti-hyperglycemic drugs have gathered the attention of researchers towards the search for new therapeutic approaches. Inhibition of activities of carbohydrate hydrolyzing enzymes is one of the approaches to reduce postprandial hyperglycemia by delaying digestion and absorption of carbohydrates. Objectives: The objective of the study was to investigate phytochemicals, antioxidants, digestive enzymes inhibitory effect, and molecular docking of potent extract. Materials and Methods: In this study, we carry out the substratebased α-glucosidase and α-amylase inhibitory activity of Asparagus racemosus, Bergenia ciliata, Calotropis gigantea, Mimosa pudica, Phyllanthus emblica, and Solanum nigrum along with the determination of total phenolic and flavonoids contents. Likewise, the antioxidant activity was evaluated by measuring the scavenging of DPPH radical. Additionally, antibacterial activity was also studied by Agar well diffusion method. Molecular docking of bioactive compounds from B. ciliata was performed via AutoDock vina. Results: B. ciliata, M. pudica, and P. emblica exhibit significant inhibitory activity against the α-glucosidase and α-amylase with IC 50 (µg/ml) of (2.24 ± 0.01, 46.19 ± 1.06), (35.73 ± 0.65, 99.93 ± 0.9) and (8.12 ± 0.29, no significant activity) respectively indicating a good source for isolating a potential drug candidate for diabetes. These plant extracts also showed significant antioxidant activity with the IC 50 ranges from 13.2 to 26.5 µg/mL along with the significant antibacterial activity towards Staphylococcus aureus and Klebsiella pneumonia. Conclusion: Bergenia extract appeared to be a potent α-glucosidase and α-amylase inhibitor. Further research should be carried out to characterize inhibitor compounds.
Several medicinal plants have been used from the traditional period of times to cure different diseases but there is little scientific evidence. The phytochemicals of plants can reduce cardiovascular and other diseases. The present study analyzed the five different medicinal plants of the Gulmi and Rupandehi districts of Nepal using in vitro studies. They were Crateva Unilocularis, Aegle marmelos, Nyctanthes arbor-tristis, Urtica dioica and Justicia adhatoda. The antioxidant potential of the methanolic extract of plants was evaluated by DPPH radical scavenging assay, total phenolic content was determined by using the Folin-Ciocalteu method and total flavonoid content was determined by using the Aluminium chloride colorimetric method. Results revealed that the methanolic extract of plants contained phytochemicals such as alkaloids, flavonoids, polyphenols, saponins, quinones, terpenoids, etc. The extract of Nyctanthes arbor-tristi showed the highest % of radical scavenging activity up to 64.931±0.032% with an IC50 value of 70.506±1.55μg/ml followed by Aegle marmelos and the lowest in Urtica dioica. Nyctanthes arbor-tristis revealed the highest TPC (97.647±7.01mgGAE/g) and lowest in Urtica dioica. Crateva unilocularis had the highest TFC 31.99±2.345mgQE/g and followed by Nyctanthes arbortristis and lowest in Justicia adhatoda. These parameters were analyzed from the period 5 September 2021 to 10 October 2021.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.