The cardiovascular system, which is one of the complex and indispensable systems in the body, is responsible for the circulation of nutrition, oxygen, carbon dioxide, hormones to other parts of...
There have been many efforts to synthesize advanced materials that are capable of real-time specific recognition of a molecular target, and allow the quantification of a variety of biomolecules. Scaffold materials have a porous structure, with a high surface area and their intrinsic nanocavities can accommodate cells and macromolecules. The three-dimensional structure (3D) of scaffolds serves not only as a fibrous structure for cell adhesion and growth in tissue engineering, but can also provide the controlled release of drugs and other molecules for biomedical applications. There has been a limited number of reports on the use of scaffold materials in biomedical sensing applications. This review highlights the potential of scaffold materials in the improvement of sensing platforms and summarizes the progress in the application of novel scaffold-based materials as sensor, and discusses their advantages and limitations. Furthermore, the influence of the scaffold materials on the monitoring of infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and bacterial infections, was reviewed.
The nervous system, which consists of a complex network of millions of neurons, is one of the most highly intricate systems in the body. This complex network is responsible for the physiological and cognitive functions of the human body. Following injuries or degenerative diseases, damage to the nervous system is overwhelming because of its complexity and its limited regeneration capacity. However, neural tissue engineering currently has some capacities for repairing nerve deficits and promoting neural regeneration, with more developments in the future. Nevertheless, controlling the guidance of stem cell proliferation and differentiation is a challenging step towards this goal. Nanomaterials have the potential for the guidance of the stem cells towards the neural lineage which can overcome the pitfalls of the classical methods since they provide a unique microenvironment that facilitates cell–matrix and cell–cell interaction, and they can manipulate the cell signaling mechanisms to control stem cells’ fate. In this article, the suitable cell sources and microenvironment cues for neuronal tissue engineering were examined. Afterward, the nanomaterials that impact stem cell proliferation and differentiation towards neuronal lineage were reviewed.
In this study, the rGO-PEI-AgNPs sensor was designed as a new effective platform to sensitive monitoring of deltamethrin in human plasma samples. For this purpose, reduced graphene oxide (rGO)-supported polyethylenimine (PEI) was used as a suitable substrate for dispersion of silver nanoparticles (AgNPs) as amplification and catalytic element. Therefore, a novel interface (rGO-PEI-AgNPs) was prepared by the fully electrochemical method on the surface of glassy carbon electrodes. The engineered nano-sensor showed a wide dynamic range of 10 nM to 1 mM and low limit of quantification (LLOQ) as 10 nM in human plasma sample, which revealed excellent analytical performance for the recognition of deltamethrin with high sensitivity and reproducibility through differential pulse voltammetry and square wave voltammetry techniques. The results confirm that rGO-PEI-AgNPs as a novel biocompatible interface can provide appropriate, reliable, affordable, rapid, and user-friendly diagnostic tools in the detection of deltamethrin in human real samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.