Abstract. We present the first high-resolution (500 m × 500 m) gridded methane (CH 4 ) emission inventory for Switzerland, which integrates 90 % of the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH 4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH 4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH 4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process-or area-specific emission factors. In Switzerland, the highest CH 4 emissions in 2011 originated from the agricultural sector (150 Gg CH 4 yr −1 ), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH 4 yr −1 ) mainly from landfills and the energy sector (12 Gg CH 4 yr −1 ), which was dominated by emissions from natural gas distribution. Compared with the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH 4 yr −1 ), making up only 3 % of the total emissions in Switzerland. CH 4 fluxes from agricultural soils were estimated to be not significantly different from zero (between −1.5 and 0 Gg CH 4 yr −1 ), while forest soils are a CH 4 sink (approx. −2.8 Gg CH 4 yr −1 ), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and an European (TNO/MACC) CH 4 inventory. This new spatially explicit emission inventory for Switzerland will provide valuable input for regional-scale atmospheric modeling and inverse source estimation.
Atmospheric deposition of the major elements was estimated from throughfall and bulk deposition measurements on 13 plots of the Swiss Long-Term Forest Ecosystem Research (LWF) between 1995 and 2001. Independent estimates of the wet and dry deposition of nitrogen (N) and sulfur (S) on these same plots were gained from combined simplified models. The highest deposition fluxes were measured at Novaggio (Southern Switzerland), exposed to heavy air pollution originating from the Po Plain, with throughfall fluxes averaging 29 kg ha(-1) a(-1) for N and 15 kg ha(-1) a(-1) for S. Low deposition fluxes were measured on the plots above 1800 m, with throughfall fluxes lower than 4.5 kg ha(-1) a(-1) for N and lower than 3 kg ha(-1) a(-1) for S. The wet deposition of N and S derived from bulk deposition was close to the modeled wet deposition, but the dry deposition derived from throughfall was significantly lower than the modeled dry deposition for both compounds. However, both the throughfall method and the model yielded total deposition estimates of N which exceeded the critical loads calculated on the basis of long-term mass balance considerations. These estimates were within or above the range of empirical critical loads except above 1800 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.