This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Introduction While the beneficial effect of vaccination, restrictive measures, and social distancing in reducing mortality due to SARS-CoV-2 is intuitive and taken for granted, seasonality (predictable fluctuation or pattern that recurs or repeats over a one-year period) is still poorly understood and insufficiently taken into consideration. We aimed to examine SARS-CoV-2 seasonality in countries with temperate climate. Methods We identified countries with temperate climate and extracted average country temperature data from the National Center for Environmental information and from the Climate Change Knowledge Portal. We obtained mortality and vaccination rates from an open access database. We used the stringency index derived from the Oxford COVID-19 Government Response Tracker to quantify restriction policies. We used Spearman's and rank-correlation non-parametric test coefficients to investigate the association between COVID-19 mortality and temperature values. We employed multivariate regression models to analyze how containment measures, vaccinations, and monthly temperatures affected COVID-19 mortality rates. Results The time series for daily deaths per million inhabitants and average monthly temperatures of European countries with a temperate climate had a negative correlation (p < 0.0001 for all countries, 0.40 < R < 0.86). When running multivariate regression models with country fixed effects, we noted that mortality rates were significantly lower when temperature were higher. Interestingly, when adding an interaction term between monthly temperatures and vaccination rates, we found that as monthly temperatures dropped, the effect of the vaccination campaign on mortality was larger than at higher temperatures. Discussion Deaths attributed to SARS-CoV-2 decreased during the summer period in temperate countries. We found that the effect of vaccination rates on mortality was stronger when temperatures were lower. Stakeholders should consider seasonality in managing SARS-CoV-2 and future pandemics to minimize mortality, limit the pressure on hospitals and intensive care units while maintaining economic and social activities.
Background: Myocardial injury (MI) can be detected during the acute phase of Coronavirus disease 19 and is associated with a dismal prognosis. Recent imaging studies described the persistence of cardiac abnormalities after the recovery. The aim of the study was to investigate the spectrum of cardiac abnormalities at mid-term follow-up in patients recovered from COVID-19 using clinical assessment, laboratory tests, and imaging evaluation with comprehensive echocardiography.Methods: This is an observational, cross-sectional study assessing an unselected cohort of consecutive patients recovered from COVID-19. MI was defined by elevated plasma levels of high sensitive troponin T (hsTnT). At the follow-up, a complete examination including echocardiography was performed. Results:The 123 patients included were divided into two groups according to the presence of MI during hospitalization: group A (without MI) and group B (with MI). After a median of 85 days, group B patients were more frequently symptomatic for dyspnea and had significantly higher values of hsTnT and N-Terminal prohormone of Brain Natriuretic Peptide (NT-proBNP), compared to Group A. No differences between the 1778
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.