This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Purpose To determine whether Macklin effect (a linear collection of air contiguous to the bronchovascular sheath) on baseline CT imaging is an accurate predictor for subsequent pneumomediastinum (PMD)/pneumothorax (PNX) development in invasively ventilated patients with COVID-19-related acute respiratory distress syndrome (ARDS). Materials and methods This is an observational, case-control study. From a prospectively acquired database, all consecutive invasively ventilated COVID-19 ARDS patients who underwent at least one baseline chest CT scan during the study time period (February 25th, 2020–December 31st, 2020) were identified; those who had tracheal lesion or already had PMD/PNX at the time of the first available chest imaging were excluded. Results 37/173 (21.4%) patients enrolled had PMD/PNX; specifically, 20 (11.5%) had PMD, 10 (5.8%) PNX, 7 (4%) both. 33/37 patients with subsequent PMD/PNX had Macklin effect on baseline CT (89.2%, true positive s) 8.5 days [range, 1–18] before the first actual radiological evidence of PMD/PNX. Conversely, 6/136 patients without PMD/PNX (4.4%, false positive s) demonstrated Macklin effect ( p < 0.001). Macklin effect yielded a sensitivity of 89.2% (95% confidence interval [CI]: 74.6–96.9), a specificity of 95.6% (95% CI: 90.6–98.4), a positive predictive value (PV) of 84.5% (95% CI: 71.3–92.3), a negative PV of 97.1% (95% CI: 74.6–96.9) and an accuracy of 94.2% (95% CI: 89.6–97.2) in predicting PMD/PNX (AUC:0.924). Conclusions Macklin effect accurately predicts, 8.5 days in advance, PMD/PNX development in COVID-19 ARDS patients.
Introduction While the beneficial effect of vaccination, restrictive measures, and social distancing in reducing mortality due to SARS-CoV-2 is intuitive and taken for granted, seasonality (predictable fluctuation or pattern that recurs or repeats over a one-year period) is still poorly understood and insufficiently taken into consideration. We aimed to examine SARS-CoV-2 seasonality in countries with temperate climate. Methods We identified countries with temperate climate and extracted average country temperature data from the National Center for Environmental information and from the Climate Change Knowledge Portal. We obtained mortality and vaccination rates from an open access database. We used the stringency index derived from the Oxford COVID-19 Government Response Tracker to quantify restriction policies. We used Spearman's and rank-correlation non-parametric test coefficients to investigate the association between COVID-19 mortality and temperature values. We employed multivariate regression models to analyze how containment measures, vaccinations, and monthly temperatures affected COVID-19 mortality rates. Results The time series for daily deaths per million inhabitants and average monthly temperatures of European countries with a temperate climate had a negative correlation (p < 0.0001 for all countries, 0.40 < R < 0.86). When running multivariate regression models with country fixed effects, we noted that mortality rates were significantly lower when temperature were higher. Interestingly, when adding an interaction term between monthly temperatures and vaccination rates, we found that as monthly temperatures dropped, the effect of the vaccination campaign on mortality was larger than at higher temperatures. Discussion Deaths attributed to SARS-CoV-2 decreased during the summer period in temperate countries. We found that the effect of vaccination rates on mortality was stronger when temperatures were lower. Stakeholders should consider seasonality in managing SARS-CoV-2 and future pandemics to minimize mortality, limit the pressure on hospitals and intensive care units while maintaining economic and social activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.