O objetivo do estudo foi avaliar a assistência pré-natal em uma maternidade pública segundo a perspectiva de puérperas e profissionais de saúde. Trata-se de um estudo qualitativo, no qual participaram 19 puérperas e 6 profissionais de saúde. Foram aplicadas as técnicas da entrevista semiestruturada com as puérperas e de grupo focal com os profissionais. A análise do discurso dos participantes teve como referencial metodológico a Hermenêutica de Profundidade. Os principais resultados evidenciaram o enaltecimento do profissional de saúde por parte das usuárias. Segundo os profissionais, as gestantes apresentavam um conhecimento "errado" sobre saúde durante a gravidez. Sobre o atendimento na Nutrição, as puérperas destacaram a possibilidade de diálogo, e o apoio e o incentivo recebidos durante as consultas. Concluindo, a educação em saúde no pré-natal deve levar em consideração que cada mulher é um sujeito único e que carrega consigo sua própria cultura. A formação do vínculo torna-se crucial para o maior envolvimento da gestante nas questões relacionadas à sua saúde.
pica must be investigated at prenatal assistance and recognized as a risk factor for the mother's health.
ABSTRACT:Objective: To evaluate the performance of various anthropometric evaluation methods for adolescent pregnant women in the prediction of birth weight. Methods: It is a cross-sectional study including 826 adolescent pregnant women. In the pre-pregnancy body mass index (BMI) classification, the recommendations of the World Health Organization were compared with that of the Brazilian Ministry of Health and the Institute of Medicine (IOM) of 1992 and 2006. The gestational weight gain adequacy was evaluated according to the classification of IOM of 1992, of 2006 and of the Brazilian Ministry of Health. The newborns were classified as low birth weight (LBW) or macrosomic. Multinomial logistic regression was used for statistical analysis and sensibility, specificity, accuracy, positive and negative predictive values were calculated. Results: The evaluation, according to the Brazilian Ministry of Health, showed the best prediction for LBW among pregnant women with low weight gain (specificity = 69.5%). The evaluation according to the IOM of 1992 showed the best prediction for macrosomia among pregnant women with high weight gain (specificity = 50.0%). The adequacy of weight gain according to the IOM of 1992 classification showed the best prediction for LBW (OR = 3.84;, followed by the method of the Brazilian Ministry of Health (OR = 2.88, 95%CI 1.73 -4.79), among pregnant women with low weight gain. Conclusion: It is recommended the adoption of the Brazilian Ministry of Health proposal, associated with BMI cut-offs specific for adolescents as an anthropometric assessment method for adolescent pregnant women.
O b j e c t i v e s : t o a s s e s s t h e p e r f o r m a n c e o f v a r i o u s anthropometric methods for the evaulation of the nutritional status of pregnant women as a means of predicting low birth weight (LBW). M e t h o d s : a d e s c r i p t i v e c ro s s -c u t t i n g s t u d y c a r r i e d out among 433 pregnant women (≥20 years) attending a Public Maternity Hospital in Rio de Janeiro, Brazil. The adequacy of the weight gain at the end of the pregnancy w a s e v a l u a t e d i n a c c o rd a n c e w i t h t h e p ro p o s a l s o f t h e I n s t i t u t e o f M e d i c i n e a n d t h e B r a z i l i a n M i n i s t r y o f H e a l t h . T h e s e n s i t i v i t y, s p e c i f i c i t y a n d a c c u r a c y o f t h e adequacy of weight gain at the end of the pregnancy or n u t r i t i o n a l s t a t e o f m o t h e r a s a p re d i c t o r o f l o w b i r t h weight were calculated.Results: the sensitivity of the various methods varied from 63.1% to 68.4% and the specificity from 71.2% to (OR=4.10; 75.1%. The adapted Institute of Medicine proposal drawn up by the Brazilian Ministry of Health, according to the classification of the pre-delivery nutritional status of the mother according to the World Health Organization cutoff points showed itself to be the most accurate (74.5%), t h i s b e i n g t h e m o s t a d e q u a t e m e t h o d f o r n u t r i t i o n a l triage for reason of its association with low birth weight Resumo O b j e t i v o s : a v a l i a r o d e s e m p e n h o d e d i f e re n t e s métodos antropométricos para avaliação nutricional de gestantes para predizer o baixo peso ao nascer (BPN). Métodos: estudo descritivo do tipo transversal, real i z a d o c o m 4 3 3 p u é r p e r a s ( ≥ 2 0 a n o s ) a t e n d i d a s n u m a M a t e r n i d a d e P ú b l i c a d o R i o d e J a n e i ro , B r a s i l . A a d e q u a ç ã o d o g a n h o d e p e s o a o f i n a l d a g e s t a ç ã o f o i avaliada segundo as propostas do R e s u l t a d o s : a s e n s i b i l i d a d e d o s m é t o d o s v a r i o u d e 63,1% a 68,4% e a especificidade de 71,2% a 75,1%. A a d a p t a ç ã o d a p ro p o s t a d o I n s t i t u t e o f M e d i c i n e e l a b orada pelo Ministério da Saúde, segundo a classificação d o e s t a d o n u t r i c i o n a l p r é -g e s t a c i o n a l p e l o s p o n t o s d e c o r t e d a O rg a n i z a ç ã o M u n d i a l d a S a ú d e a p re s e n t o u m a i o r a c u r á c i a ( 7 4 , 5 % ) , s e n d o e s t e ú l t i m o o m a i s adequado para triagem nutricional pela sua associaçãocom o BPN (OR=4,10; IC95%=1,92
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.