What is the central question of this study? We hypothesized that potential anti-tumour effects of exercise training might be mediated by oxytocin and explored the underlying mechanisms in a mouse model of breast cancer. What is the main finding and its importance? Interval exercise training, by inducing oxytocin secretion, may reduce the activity of the PI3K/Akt and ERK pathways, and consequently, results in a smaller tumour volume in a mouse model of breast cancer. Exercise training can affect the growth of breast tumours. We hypothesized that exercise training might reduce breast tumour growth by inducing oxytocin (OT) secretion and its related signalling pathways, such as PI3K/Akt and ERK. Therefore, 56 BALB/c mice were equally divided into seven groups to study the effects of OT and atosiban (an oxytocin receptor antagonist) together with interval exercise training on mammary tumour growth, as well as tumour-related signalling pathways, including PI3K/Akt and ERK. Animal weight, OT plasma concentration, tumour weight and volume were measured at the end of the study. PI3K/Akt and ERK were evaluated by Western blot and qPCR assays. The results showed that OT plasma concentration was significantly increased in trained animals. The volume and weight of tumours were decreased significantly after both exercise training and OT administration. The expression of genes involved in tumour cell proliferation, such as PI3KR2, Akt and mTOR, was notably lower in the exercise-trained and OT-treated groups. Furthermore, the expression of genes involved in cell apoptosis, such as caspase-3 and Bax, was significantly increased in the tumour tissues. In addition, Western blot results showed that phosphorylated Akt and ERK were significantly decreased in the exercise training and OT groups compared with the tumour group. Interestingly, atosiban reversed these effects. These results indicated that interval exercise training, acting via OT secretion, may reduce PI3K/Akt and ERK axis activities, and consequently, decrease tumour volume and weight in a mouse model of breast cancer.
Background:Cytokines play an important role in modulating the muscle’s metabolic and immunological responses to exercise.Objectives:In the present study, we investigated changes in the serum levels of Interleukin (IL)-15 as well as tumor necrosis factor (TNF)-α and high sensitivity C-reactive protein (hs-CRP), as markers of inflammation, in athlete and non-athlete young men following eccentric (ECC) and concentric (CON) emphasized resistance exercise (RE).Patients and Methods:This study recruited 28 young males, 14 athletes and 14 non-athletes. Subjects completed two bouts of ECC and CON emphasized RE five days apart. Each bout included seven exercises that emphasized all major muscle groups with weight loads of 70% - 80% of one repetition maximum (1RM) for CON RE and 90% - 100% of 1RM for ECC RE. We analyzed subjects’ blood samples before and immediately after each bout of exercise to determine cytokine and hs-CRP serum levels according to enzyme-linked immunosorbent assay.Results:Statistical analysis showed a significant difference between IL-15 serum levels before and after ECC and CON RE in non-athletes (P = 0.03). In athletes, IL-15 serum level only increased after ECC RE (P = 0.01), which was noted to be the highest degree of change in IL-15 levels in all subjects. For athletes, the hs-CRP levels significantly decreased (P < 0.05). The serum levels of both TNF-α and hs-CRP were also significantly down-regulated after ECC RE in non-athletes.Conclusions:These results indicated that fitness level and RE could modulate circulating levels of IL-15 and suggest the potential anti-inflammatory effects of IL-15 during RE.
BackgroundRecently it has been suggested that low intensity (LI) resistance exercise (RE) alone or in combination with blood flow restriction (BFR) can be applied for cardiovascular function improvement or rehabilitation.ObjectivesThe aim of the present study was to investigate the acute effects of LI eccentric RE with and without BFR on heart rate (HR), rate pressure product (RPP), blood pressure (BP) parameters [systolic, diastolic, and mean arterial pressure (MAP)], oxygen saturation (SpO2) and rate of perceived exertion (RPE).MethodsIn a semi-experimental study 16 young adults (26.18 ± 3.67 years) volunteered and performed LI (30% maximum voluntary contraction) eccentric RE alone or combined with BFR.ResultsThe results indicated that HR, RPP, and RPE increased significantly within both groups (P < 0.05); SBP and DBP increased significantly only with BFR (P < 0.05); MAP increased significantly during exercise without BFR (P < 0.05); and no change was observed in SpO2 in either groups (P > 0.05). Furthermore, studied parameters did not vary amongst different groups (P > 0.05).ConclusionsIt is concluded that LI eccentric RE with BFR positively regulated the hemodynamic and cardiovascular responses. Therefore, the eccentric RE combined with BFR seems to be a good option for future studies with the aim of time efficacy, since it alters these parameters within normal values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.