Mixed neuroendocrine non-neuroendocrine neoplasms (MiNENs) represent a rare diagnosis of the gastro-entero-pancreatic tract. Evidence from the current literature regarding their epidemiology, biology, and management is of variable quality and conflicting. Based on available data, the MiNEN has an aggressive biological behaviour, mostly driven by its (often high-grade) neuroendocrine component, and a dismal prognosis. In most cases, the non-neuroendocrine component is of adenocarcinoma histology. Due to limitations in diagnostic methods and poor awareness within the scientific community, the incidence of MiNENs may be underestimated. In the absence of data from clinical trials, MiNENs are commonly treated according to the standard of care for pure neuroendocrine carcinomas or adenocarcinomas from the same sites of origin, based on the assumption of a biological similarity to their pure counterparts. However, little is known about the molecular aberrations of MiNENs, and their pathogenesis remains controversial; molecular/genetic studies conducted so far point towards a common monoclonal origin of the two components. In addition, mutations in tumour-associated genes, including TP53, BRAF, and KRAS, and microsatellite instability have emerged as potential drivers of MiNENs. This systematic review (91 full manuscripts or abstracts in English language) summarises the current reported literature on clinical, pathological, survival, and molecular/genetic data on MiNENs.
Our systematic analysis of anion channels and transporters in idiopathic pulmonary arterial hypertension (IPAH) showed marked upregulation of the Cl− channel TMEM16A gene. We hypothesised that TMEM16A overexpression might represent a novel vicious circle in the molecular pathways causing pulmonary arterial hypertension (PAH).We investigated healthy donor lungs (n=40) and recipient lungs with IPAH (n=38) for the expression of anion channel and transporter genes in small pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs).In IPAH, TMEM16A was strongly upregulated and patch-clamp recordings confirmed an increased Cl− current in PASMCs (n=9–10). These cells were depolarised and could be repolarised by TMEM16A inhibitors or knock-down experiments (n=6–10). Inhibition/knock-down of TMEM16A reduced the proliferation of IPAH-PASMCs (n=6). Conversely, overexpression of TMEM16A in healthy donor PASMCs produced an IPAH-like phenotype. Chronic application of benzbromarone in two independent animal models significantly decreased right ventricular pressure and reversed remodelling of established pulmonary hypertension.Our findings suggest that increased TMEM16A expression and activity comprise an important pathologic mechanism underlying the vasoconstriction and remodelling of pulmonary arteries in PAH. Inhibition of TMEM16A represents a novel therapeutic approach to reverse remodelling in PAH.
TWIK-related acid-sensitive potassium channel 1 (TASK-1 encoded by KCNK3) belongs to the family of two-pore domain potassium channels. This gene subfamily is constitutively active at physiological resting membrane potentials in excitable cells, including smooth muscle cells, and has been particularly linked to the human pulmonary circulation. TASK-1 channels are sensitive to a wide array of physiological and pharmacological mediators that affect their activity such as unsaturated fatty acids, extracellular pH, hypoxia, anaesthetics and intracellular signalling pathways. Recent studies show that modulation of TASK-1 channels, either directly or indirectly by targeting their regulatory mechanisms, has the potential to control pulmonary arterial tone in humans. Furthermore, mutations in KCNK3 have been identified as a rare cause of both familial and idiopathic pulmonary arterial hypertension. This review summarises our current state of knowledge of the functional role of TASK-1 channels in the pulmonary circulation in health and disease, with special emphasis on current advancements in the field.
Transcriptional changes in superficial spinal dorsal horn neurons (SSDHN) are essential in the development and maintenance of prolonged pain. Epigenetic mechanisms including post-translational modifications in histones are pivotal in regulating transcription. Here, we report that phosphorylation of serine 10 (S10) in histone 3 (H3) specifically occurs in a group of rat SSDHN following the activation of nociceptive primary sensory neurons by burn injury, capsaicin application or sustained electrical activation of nociceptive primary sensory nerve fibres. In contrast, brief thermal or mechanical nociceptive stimuli, which fail to induce tissue injury or inflammation, do not produce the same effect. Blocking N-methyl-D-aspartate receptors or activation of extracellular signal-regulated kinases 1 and 2, or blocking or deleting the mitogen- and stress-activated kinases 1 and 2 (MSK1/2), which phosphorylate S10 in H3, inhibit up-regulation in phosphorylated S10 in H3 (p-S10H3) as well as fos transcription, a down-stream effect of p-S10H3. Deleting MSK1/2 also inhibits the development of carrageenan-induced inflammatory heat hyperalgesia in mice. We propose that p-S10H3 is a novel marker for nociceptive processing in SSDHN with high relevance to transcriptional changes and the development of prolonged pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.