SummaryFor many years, the isolated perfused rat liver (IPRL) model has been used to investigate the physiology and pathophysiology of the rat liver. This in vitro model provides the opportunity to assess cellular injury and liver function in an isolated setting. This review offers an update of recent developments regarding the IPRL set-up as well as the viability parameters that are used, with regards to liver preservation and ischaemia and reperfusion mechanisms.A review of the literature was performed into studies regarding liver preservation or liver ischaemia and reperfusion. An overview of the literature is given with particular emphasis on perfusate type and volume, reperfusion pressure, flow, temperature, duration of perfusion, oxygenation and on applicable viability parameters (liver damage and function).The choice of IPRL set-up depends on the question examined and on the parameters of interest. A standard technique is cannulation of the portal vein, bile duct and caval vein with pressure-controlled perfusion at 20 cm H 2 O (15 mmHg) to reach a perfusion flow of approximately 3 mL/min/g liver weight. The preferred perfusion solution is Krebs-Henseleit buffer, without albumin. The usual volume is 150-300 cm 3 , oxygenated to a pO 2 of more than 500 mmHg. The temperature of the perfusate is maintained at 371C. Standardized markers should be used to allow comparison with other experiments.Keywords Isolated perfused rat liver (IPRL); liver preservation; parameters; liver function; liver damage For many years, the isolated perfused rat liver (IPRL) model has been used to investigate the physiology and pathophysiology of the rat liver. This in vitro model provides the opportunity to assess cellular injury and liver function in an isolated setting.The IPRL model was first reported by Claude Bernard in 1855 (Gores et al. 1986).In the review about the IPRL written by Gores et al. in 1986, the authors stated that the model remained a valuable reperfusion model, although other methods such as the assessment of liver slices, cell cultures, cell suspensions and isolated organelles had emerged. To date, the IPRL provides valuable data in studies regarding liver physiology using new techniques in the field of molecular biology and genetics.In the field of liver preservation, the IPRL model has been used for, among others, assessment of ischaemia-reperfusion injury, metabolism of perfusate compounds, metabolism of ammonium and amino acids (Haussinger 1987), endothelial function using hyaluronic acid uptake (Reinders et al. 1996), oxygen consumption (Dahn et al.
Liver grafts are frequently discarded due to steatosis. Steatotic livers can be classified as suboptimal and deteriorate rapidly during hypothermic static preservation, often resulting in graft nonfunction. Hypothermic machine perfusion (MP) has been introduced for preservation of donor livers instead of cold storage (CS), resulting in superior preservation outcomes. The aim of this study was to compare CS and MP for preservation of the steatotic donor rat liver. Liver steatosis was induced in male Wistar rats by a choline-methionine-deficient diet. After 24 hours hypothermic CS using the University of Wisconsin solution (UW) or MP using UW-Gluconate (UW-G), liver damage (liver enzymes, perfusate flow, and hyaluronic acid clearance) and liver function (bile production, ammonia clearance, urea production, oxygen consumption, adenosine triphosphate [ATP] levels) were assessed in an isolated perfused rat liver model. Furthermore, liver biopsies were visualized by hematoxylin and eosin staining. Animals developed 30 to 60% steatosis. Livers preserved by CS sustained significantly more damage as compared to MP. Bile production, ammonia clearance, urea production, oxygen consumption, and ATP levels were significantly higher after MP as compared to CS. These results were confirmed by histology. In conclusion, MP improves preservation results of the steatotic rat liver, as compared to CS. Liver Transpl 13: 497-504, 2007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.