Large glass areas, even high-performance glazing with Low-E coating, could lead to discomfort if exposed to solar radiation due to radiant asymmetry. In addition, air-to-air cooling systems affect the thermal environment indoors. Water-Flow Glazing (WFG) is a disruptive technology that enables architects and engineers to design transparent and translucent facades with new features, such as energy management. Water modifies the thermal behavior of glass envelopes, the spectral distribution of solar radiation, the non-uniform nature of radiation absorption, and the diffusion of heat by conduction across the glass pane. The main goal of this article was to assess energy consumption and comfort conditions in office spaces with a large glass area by using WFG as a radiant heating and cooling system. This article evaluates the design and operation of an energy management system coupled with WFG throughout a year in an actual office space. Temperature, relative humidity, and solar radiation sensors were connected to a control unit that actuated the different devices to keep comfortable conditions with minimum energy consumption. The results in summer conditions revealed that if the mean radiant temperature ranged from 19.3 to 23 °C, it helped reduce the operative temperature to comfortable levels when the indoor air temperature was between 25 and 27.5 °C. The Predicted Mean Vote in summer conditions was between 0 and −0.5 in working hours, within the recommended values of ASHRAE-55 standard.
The transparent materials used in building envelopes significantly contribute to heating and cooling loads of a building. The use of transparent materials requires to solve issues regarding heat gain, heat loss, and daylight. Water flow glazing (WFG), a disruptive technology, includes glazing as part of the Heating, Ventilation and Air Conditioning (HVAC) system. Water is transparent to visible wavelengths, but it captures most of the infrared solar radiation. As an alternative to fossil fuel-based HVAC systems, the absorbed energy can be transferred to the ground through borehole heat exchangers and dissipated as a means of free-cooling. Researchers of the Polytechnic University of Madrid have developed a software tool to calculate the energy balance while incorporating the dynamic properties of WFG. This article has studied the mathematical model of that tool and validated its ability to predict energy savings in buildings, taking spectral and thermal parameters of glazing catalogs, commercial software, and inputs from the measurements of the prototypes. The results found in this article showed that it is possible to predict the thermal behavior of WFG and the energy savings by comparing the thermal parameters of two prototypes. The energy absorbed by the water depends on the mass flow rate and the inlet and outlet temperatures.
New light envelopes for buildings need a holistic vision based on the integration of architectural design, building simulation, energy management, and the curtain wall industry. Water flow glazing (WFG)-unitized facades work as transparent and translucent facades with new features, such as heat absorption and renewable energy production. The main objective of this paper was to assess the performance of a new WFG-unitized facade as a high-performance envelope with dynamic thermal properties. Outdoor temperature, variable mass flow rate, and solar radiation were considered as transient boundary conditions at the simulation stage. The thermal performance of different WFGs was carried out using simulation tools and real data. The test facility included temperature sensors and pyranometers to validate simulation results. The dynamic thermal transmittance ranged from 1 W/m2K when the mass flow rate is stopped to 0.06 W/m2K when the mass flow rate is above 2 L/min m2. Selecting the right glazing in each orientation had an impact on energy savings, renewable energy production, and CO2 emissions. Energy savings ranged from 5.43 to 6.46 KWh/m2 day in non-renewable energy consumption, whereas the renewable primary energy production ranged from 3 to 3.42 KWh/m2 day. The CO2 emissions were reduced at a rate of 1 Kg/m2 day. The disadvantages of WFG are the high up-front cost and more demanding assembly process.
The extensive use of glass in modern architecture has increased the heating and cooling loads in buildings. Recent studies have presented water flow glazing (WFG) envelopes as an alternative building energy management system to reduce energy consumption and improve thermal comfort in buildings. Currently, commercial software for thermal simulation does not include WFG as a façade material. This article aims to validate a new building simulation tool developed by the authors. Simulation results were compared with real data from a scale prototype composed of two twin cabins with different glazing envelopes: a Reference double glazing with solar-control coating and a triple water flow glazing. The results showed a good agreement between the simulation and the real data from the prototype. The mean percentage error of the indoor temperature cabin was lower than 5.5% and 3.2% in the WFG cabin and in the Reference glazing one, respectively. The indoor air temperature of the WFG cabin was 5 °C lower than the Reference one in a free-floating temperature regime when the outdoor air temperature was 35 °C and the maximum value of solar radiation was above 700 W/m2. WFG has energy-saving potential and is worthy of further research into the standardization of its manufacturing process and its ability to increase building occupants’ comfort.
High initial costs hinder innovative technologies for building envelopes. Life Cycle Assessment (LCA) should consider energy savings to show relevant economic benefits and potential to reduce energy consumption and CO2 emissions. Life Cycle Cost (LCC) and Life Cycle Energy (LCE) should focus on investment, operation, maintenance, dismantling, disposal, and/or recycling for the building. This study compares the LCC and LCE analysis of Water Flow Glazing (WFG) envelopes with traditional double and triple glazing facades. The assessment considers initial, operational, and disposal costs and energy consumption as well as different energy systems for heating and cooling. Real prototypes have been built in two different locations to record real-world data of yearly operational energy. WFG systems consistently showed a higher initial investment than traditional glazing. The final Life Cycle Cost analysis demonstrates that WFG systems are better over the operation phase only when it is compared with a traditional double-glazing. However, a Life Cycle Energy assessment over 50 years concluded that energy savings between 36% and 66% and CO2 emissions reduction between 30% and 70% could be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.