Severe Acute Respiratory Syndrome Coronavirus- 2 (SARS-CoV-2), including the recently reported severe variant B.1.617.2, has been reported to attack the respiratory tract with symptoms that may ultimately lead to death. While studies have been conducted to evaluate therapeutic interventions against the virus, this study evaluated the inhibitory potential of virtually screened novel derivatives and structurally similar compounds towards SARS-CoV-2 via a computational approach. A molecular docking simulation of the inhibitory potentials of the compounds against the SARS-CoV-2 drug targets—main protease (Mpro), spike protein (Spro), and RNA-dependent RNA polymerase (RdRp)—were evaluated and achieved utilizing AutoDock Vina in PyRx workspace. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of these compounds were assessed using SwissADME and ADMETLab servers. All the compounds displayed high binding affinities for the SARS-CoV-2 drug targets. However, the C13 exhibited the highest binding affinity for the drug targets, Spro and RdRp, while C15 exhibited the highest binding affinity for Mpro. The compounds interacted with the LEU A:271, LEU A:287, ASP A:289, and LEU A:272 of Mpro and the HIS A:540, PRO A:415, PHE A:486, and LEU A:370 of the Spro receptor binding motif and some active site amino acids of RdRp. The compounds also possess a favourable ADMET profile and showed no tendency towards hERG inhibition, hepatotoxicity, carcinogenicity, mutagenicity, or drug-liver injury. These novel compounds could offer therapeutic benefits against SARS-CoV-2, and wet laboratory experiments are necessary to further validate the results of this computational study.
Fermented products, including Ogi-baba and Pito, provide several health benefits, particularly when probiotics are used in the fermentation process. Probiotic microorganisms exert strain-specific health-promoting activities on humans and animals. The objective of this study was to investigate the probiotic potentials of Lactic-acid bacteria (LAB) isolates from indigenous fermented sorghum products (Ogi-baba and Pito). The LAB isolates were screened for potential probiotic properties by antagonistic activity against eight enteropathogenic clinical bacteria isolates (Escherichia coli, Klebsiella sp., Helicobacter pylori, Bacillus sp., Staphylococcus sp., Salmonella sp., Pseudomonas sp. and Listeria monocytogenes) as indicator organisms using the agar well diffusion technique. The organisms were also screened for acidity, bile tolerance, antibiotic susceptibility, production of lactic acid, diacetyl and hydrogen peroxide. β-galactosidase assay was also done. Genomic DNA was extracted from the two selected LAB isolates; the 16S rRNA were amplified and sequenced. The sequence data were subjected to Basic Local Alignment Search Tool (BLAST) and molecular phylogenetic analyses to identify the isolates. The isolates were identified as strains of Lactobacillus plantarum and Pediococcus pentosaceus. The sequence data for these two isolates were submitted to the Genbank with accession numbers KP883298 and KP883297 respectively. The P. pentosaceus strain (PB2) strain exhibited β-galactosidase activity as well as L. plantrum strain (OB6). The study revealed exceptional probiotic potentials of two LAB namely Lactobacillus plantarum strain (OB6) and Pediococcus pentosaceus strain (PB2) isolated from fermented sorghum products, Ogi-baba and Pito respectively. Hence, the two LAB strains may be potentially used as probiotic to prevent some enteropathogen-induced gastrointestinal disorders; reduce the incidence of respiratory tract infections and for the management of lactose in intolerance.
Approximately 19.3 million new cases of cancer and 10.0 million deaths from cancer were registered worldwide in 2020 (Hyuna, et al. 2020). According to WHO [1], cancer is the sixth leading cause of death globally. GLOBACAN [2] predicts that in 2040, new cases if cancers would have risen to 28.4 million. Cancer cell development is a multifaceted process that involves genetic mutation of normal cells and physiological changes that affect the body's defence mechanism [3]. The transformation of normal cells into cancerous cells necessitates the sequential acquisition of mutations resulting from genome damage caused by DNA replication errors, chemical instability of DNA bases, or attack by oxidative species and other free radicals generated during metabolic processes [4].
Background Polycystic ovary syndrome (PCOS) is a chronic endocrine disorder prevalent in premenopausal women and is characterized by a range of physiological and biochemical abnormalities which may include reproductive, endocrine, and metabolic alterations such as insulin resistance. Insulin resistance is the hallmark of PCOS as it predisposes the affected subjects to a higher risk of impaired glucose tolerance and type 2 diabetes mellitus (T2DM). In this study, the inhibitory activities of phytosterols and saccharides from aqueous extract of Costus spicatus rhizome were investigated against phosphoenolpyruvate carboxykinase (PEPCK), α-amylase, β-glucosidase, and fructose 1,6-biphosphatase (FBPase) in silico as potential novel therapeutic targets for T2DM-associated-PCOS. Phytochemical constituents of the plant were determined using gas chromatography-mass spectrophotometry (GC-MS), while molecular docking of the compounds with PEPCK, α-amylase, β-glucosidase, and FBPase was conducted using Vina. Thereafter, the binding modes were determined using Discovery Studio Visualizer, 2020. Results GCMS analysis of an aqueous extract of Costus spicatus rhizome revealed the presence of three compounds with a higher binding affinity for all enzymes studied compared to metformin. The compounds also interacted with key amino acid residues crucial to the enzyme’s activities. This study identified Lyxo-d-manno-nononic-1,4-lactone as potential multi-target inhibitors of PEPCK, α-amylase, β-glucosidase, and FBPase with reasonable pharmacokinetic properties and no significant toxicity. Conclusion These compounds can be explored as potential therapeutic agents for the management of insulin resistance in PCOS, subject to further experimental validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.