Superconducting gravimeters (SG) measure temporal changes of the Earth's gravity field with high accuracy and long term stability. Variations in local water storage components (snow, soil moisture, groundwater, surface water and water stored by vegetation) can have a significant influence on SG measurements and-from a geodetic perspective-add noise to the SG records. At the same time, this hydrological gravity signal can provide substantial information about the quantification of water balances. A 4D forward model with a spatially nested discretization domain was developed to investigate the local hydrological gravity effect on the SG records of the Geodetic Observatory Wettzell, Germany. The possible maximum gravity effect was investigated using hypothetical water storage changes based on physical boundary conditions. Generally, on flat terrain, a water mass change of one meter in the model domain causes a gravity change of 42 µGal. Simulation results show that topography increases this value to 52 µGal. Errors in the Digital Elevation Model can influence the results significantly. The radius of influence of local water storage variations is limited to 1000 m. Detailed hydrological measurements should be carried out in a radius of 50 to 100 m around the SG station. Groundwater, soil moisture and snow storage changes dominate the hydrological gravity effect at the SG Wettzell. Using observed time series for these variables in the 4D model and comparing the results to the measured gravity residuals show similarities in both seasonal and shorter-term dynamics. However, differences exist, e.g. the range comparison of the mean modeled (10 µGal) gravity signal and the measured (19 µGal) gravity signal, making additional hydrological measurements necessary in order to describe the full spatio-temporal variability of local water masses.
[1] Local water storage changes (WSC) are a key component of many hydrological issues, but their quantification is associated with a high level of uncertainty. High precision in situ gravity measurements are influenced by these WSC. This study evaluates the influence of local WSC (estimated using hydrological techniques) on gravity observations at the Geodetic Observatory Wettzell, Germany. WSC are comprehensively measured in all relevant storage components, namely groundwater, saprolite, soil, topsoil, and snow storage, and their gravity response is calculated. Total local WSC are derived, and uncertainties are assessed. With the exception of snow, all storage components have gravity responses of the same order of magnitude and are therefore relevant for gravity observations. The comparison of the total gravity response of local WSC to the gravity residuals obtained from a superconducting gravimeter shows similarities in both short-term and seasonal dynamics. A large proportion of the gravity residuals can be explained by local WSC. The results demonstrate the limitations of measuring total local WSC using hydrological methods and the potential use of in situ temporal gravity measurements for this purpose. Nevertheless, due to their integrative nature, gravity data must be interpreted with great care in hydrological studies.Citation: Creutzfeldt, B., A. Güntner, H. Thoss, B. Merz, and H. Wziontek (2010), Measuring the effect of local water storage changes on in situ gravity observations: Case study of the Geodetic Observatory Wettzell, Germany, Water Resour. Res., 46, W08531,
S U M M A R YTemporal gravimeter observations, used in geodesy and geophysics to study the Earth's gravity field variations, are influenced by local water storage changes (WSC). At the Geodetic Observatory Wettzell (Germany), WSC in the snow pack, top soil, unsaturated saprolite and fractured aquifer are all important terms of the local water budget. In this study, lysimeter measurements are used for the first time to estimate the hydrological influence on temporal gravimeter observations. Lysimeter data are used to estimate WSC at the field scale in combination with complementary observations and a hydrological 1-D model. From these estimated WSC, we calculate the hydrological gravity response. The results are compared to other methods used in the past to correct temporal gravity observations for the local hydrological influence. Lysimeter measurements significantly improve the independent estimation of WSC and thus provide a better way of reducing the local hydrological effect from gravimeter measurements. We find that the gravity residuals are caused to a larger extent by local WSC than previously stated. At sites where temporal gravity observations are used to study geophysical processes beyond local hydrology, the installation of a lysimeter is recommended.
Time-lapse gravity data provide a direct, nondestructive method to monitor mass changes at scales from centimeter to kilometer. But, the effectively infinite spatial sensitivity of gravity measurements can make it difficult to isolate the signal of interest. The variable baseline gravity gradient method, based on the difference of measurements between two gravimeters, is an alternative to the conventional approach of individually modeling all sources of mass and elevation changes. This approach can improve the signal-to-noise ratio for many applications by removing the contributions of Earth tides, loading, and other signals that have the same effect on both gravimeters. At the same time, this approach can focus the support volume within a relatively small user-defined region of the subsurface. The method is demonstrated using paired superconducting gravimeters to make for the first time a large-scale, noninvasive measurement of infiltration wetting front velocity and change in water content above the wetting front.
Abstract. In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet–temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.