Polycomb complexes regulate cell type–specific gene expression programs through heritable silencing of target genes. Trimethylation of histone H3 lysine 27 (H3K27me3) is essential for this process. Perturbation of H3K36 is thought to interfere with H3K27me3. We show that mutants of Drosophila replication-dependent ( H3.2 K36R ) or replication-independent ( H3.3 K36R ) histone H3 genes generally maintain Polycomb silencing and reach later stages of development. In contrast, combined ( H3.3 K36R H3.2 K36R ) mutants display widespread Hox gene misexpression and fail to develop past the first larval stage. Chromatin profiling revealed that the H3.2 K36R mutation disrupts H3K27me3 levels broadly throughout silenced domains, whereas these regions are mostly unaffected in H3.3 K36R animals. Analysis of H3.3 distributions showed that this histone is enriched at presumptive Polycomb response elements located outside of silenced domains but relatively depleted from those inside. We conclude that H3.2 and H3.3 K36 residues collaborate to repress Hox genes using different mechanisms.
Polycomb complexes regulate cell-type specific gene expression programs through heritable silencing of target genes. Trimethylation of histone H3 lysine 27 (H3K27me3) is essential for this process. Perturbation of H3K36 is thought to interfere with H3K27me3. We show that mutants of Drosophila replication-dependent (H3.2K36R) or -independent (H3.3K36R) histone H3 genes generally maintain Polycomb silencing and reach later stages of development. In contrast, combined (H3.3K36RH3.2K36R) mutants display widespread Hox gene misexpression and fail to develop past the first larval stage. Chromatin profiling revealed that the H3.2K36R mutation disrupts H3K27me3 levels broadly throughout silenced domains, whereas these regions are mostly unaffected in H3.3K36R animals. Analysis of H3.3 distributions showed that this histone is enriched at presumptive PREs (Polycomb Response Elements) located outside of silenced domains but relatively depleted from those inside. We conclude that H3.2 and H3.3 K36 residues collaborate to repress Hox genes using different mechanisms.
Thyroid hormone (TH) action controls brain development in a spatiotemporal manner. Previously, we demonstrated that perinatal hypothyroidism led to formation of a periventricular heterotopia in developing rats. This heterotopia occurs in the posterior telencephalon, and its formation was preceded by loss of radial glia cell polarity. As radial glia mediate cell migration and originate in a progenitor cell niche called the ventricular zone (VZ), we hypothesized that TH action may control cell signaling in this region. Here we addressed this hypothesis by employing laser capture microdissection and RNA-Seq to evaluate the VZ during a known period of TH sensitivity. Pregnant rats were exposed to a low dose of propylthiouracil (PTU, 0.0003%) through the drinking water during pregnancy and lactation. Dam and pup THs were quantified postnatally and RNA-Seq of the VZ performed in neonates. The PTU exposure resulted in a modest increase in maternal thyroid stimulating hormone and reduced thyroxine (T4). Exposed neonates exhibited hypothyroidism and T4 and triiodothyronine (T3) were also reduced in the telencephalon. RNA-Seq identified 358 differentially expressed genes in microdissected VZ cells of hypothyroid neonates as compared to controls (q-values ≤0.05). Pathway analyses showed processes like maintenance of the extracellular matrix and cytoskeleton, cell adhesion, and cell migration were significantly affected by hypothyroidism. Immunofluorescence also demonstrated that collagen IV, F-actin, radial glia, and adhesion proteins were reduced in the VZ. Immunohistochemistry of integrin αvβ3 and isoforms of both thyroid receptors (TRα/TRβ) showed highly overlapping expression patterns, including enrichment in the VZ. Taken together, our results show that TH action targets multiple components of cell junctions in the VZ, and this may be mediated by both genomic and nongenomic mechanisms. Surprisingly, this work also suggests that the blood-brain and blood-cerebrospinal fluid barriers may also be affected in hypothyroid newborns.
Arsenic is a contaminant found in many foods and drinking water. Exposure to arsenic during development can cause improper neuronal progenitor cell development, differentiation, and function, while in vitro studies have determined that acute arsenic exposure to stem and progenitor cells reduced their ability to differentiate. In the current study, P19 mouse embryonal stem cells were exposed continuously to 0.1‐μM (7.5 ppb) arsenic for 32 weeks. A cell lineage array examining messenger RNA (mRNA) changes after 8 and 32 weeks of exposure showed that genes involved in pluripotency were increased, whereas those involved in differentiation were reduced. Therefore, temporal changes of select pluripotency and neuronal differentiation markers throughout the 32‐week chronic arsenic exposure were investigated. Sox2 and Oct4 mRNA expression were increased by 1.9‐ to 2.5‐fold in the arsenic‐exposed cells, beginning at Week 12. Sox2 protein expression was similarly increased starting at Week 16 and remained elevated by 1.5‐fold to sixfold. One target of Sox2 is N‐cadherin, whose expression is a hallmark of epithelial–mesenchymal transitions (EMTs). Exposure to arsenic significantly increased N‐cadherin protein levels beginning at Week 20, concurrent with increased grouping of N‐cadherin positive cells at the perimeter of the embryoid body. Expression of Zeb1, which helps increase the expression of Sox2, was also increased started at Week 16. In contrast, Gdf3 mRNA expression was reduced by 3.4‐ to 7.2‐fold beginning at Week 16, and expression of its target protein, phospho‐Smad2/3, was also reduced. These results suggest that chronic, low‐level arsenic exposure may delay neuronal differentiation and maintain pluripotency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.