Mycotoxin enniatin B (ENN B) is a secondary metabolism product by Fusarium fungi. It is a well-known antibacterial, antihelmintic, antifungal, herbicidal, and insecticidal compound. It has been found as a contaminant in several food commodities, particularly in cereal grains, co-occurring also with other mycotoxins. The primary mechanism of action of ENN B is mainly due to its ionophoric characteristics, but the exact mechanism is still unclear. In the last two decades, it has been a topic of great interest since its potent mammalian cytotoxic activity was demonstrated in several mammalian cell lines. Moreover, the co-exposure in vitro with other mycotoxins enhances its toxic potential through synergic effects, depending on the concentrations tested. Despite its clear cytotoxic effect, European Food Safety Authority stated that acute exposure to ENNs, such as ENN B, does not indicate concern for human health, but a concern might be the chronic exposure. However, given the lack of relevant toxicity data, no firm conclusion could be drawn and a risk assessment was not possible. In fact, very few studies have been carried out in vivo and, in these studies, no adverse effects were observed. So, research on toxicological effects induced by ENN B is still on-going. Recently, some studies are dealing with new advances regarding ENN B. This review summarizes the information on biochemical and biological activity of ENN B, focusing on toxicological aspects and on the latest advances in research on ENN B.
Vascular endothelial growth factor A (VEGFA) stimulates angiogenesis and is associated with increased vascularity in ovarian follicles of cattle. The objectives of this study were to investigate the developmental and hormonal regulation of VEGFA expression in ovarian granulosa and theca cells (TC) of cattle. Bovine ovaries were collected from a local slaughterhouse and granulosa cells (GC) and TC were collected from small (SM; 1 to 5 mm) and large (LG; 8 to 20 mm) follicles. Cells were collected fresh or cultured in serum-free medium and treated with various factors that regulate angiogenesis and follicular development. RNA was collected for analysis of VEGFA mRNA abundance via quantitative PCR. In SM-follicle GC (SMGC), prostaglandin E2 (PGE2) and FSH decreased (P < 0.05) VEGFA mRNA abundance by 30 to 46%, whereas in LG-follicle GC (LGGC), PGE2 and FSH were without effect (P > 0.10). In SMGC, dihydrotestosterone (DHT), sonic hedgehog (SHH), and growth differentiation factor-9 (GDF9) decreased (P < 0.05) VEGFA expression by 30 to 40%. Fibroblast growth factor-9 (FGF9) and estradiol (E2) were without effect (P > 0.10) on VEGFA mRNA in both SMGC and LGGC, whereas progesterone increased (P < 0.05) VEGFA mRNA in LGGC but had no effect in LGTC. Bone morphogenetic protein-4 (BMP4), LH, and FGF9 increased (P < 0.05) abundance of VEGFA mRNA by 1.5- to 1.9-fold in LGTC. Insulin-like growth factor-1 (IGF1) was without effect (P > 0.10) on VEGFA mRNA in both TC and GC. An E2F transcription factor inhibitor, HLM0064741 (E2Fi), dramatically (i.e., 8- to 13-fold) stimulated (P < 0.01) the expression of VEGFA mRNA expression in both SMGC and LGTC. Abundance of VEGFA mRNA was greater (P < 0.05) in LGGC and SMGC than in LGTC. Also, SMTC had greater (P < 0.05) abundance of VEGFA mRNA than LGTC. In conclusion, VEGFA mRNA abundance was greater in GC than TC, and VEGFA expression decreased in TC during follicle development. Some treatments either suppressed, stimulated, or had no effect on VEGFA expression depending on the cell type. The inhibition of E2F transcription factors had the greatest stimulatory effect of all treatments evaluated, and thus, E2Fs may play an important role in regulating angiogenesis during follicle growth in cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.