With an intact a-wave demonstrated following ONTx, we find that the most robust indicators of RGC function in the mouse full-field ERG were the STR components.
Caffeine promotes wakefulness during night shift work, although it also disturbs subsequent daytime sleep. Increased alertness by caffeine is associated with a higher core body temperature (CBT). A lower CBT and a narrow distal-to-proximal skin temperature gradient (DPG) have been reported to be associated with improved sleep, yet whether caffeine influences the DPG is unknown. We tested the hypothesis that the use caffeine during nighttime total sleep deprivation would reduce the DPG, increase CBT and alertness, and disturb subsequent daytime recovery sleep. We also expected that a greater widening of the DPG prior to sleep would be associated with a greater degree of sleep disturbance. Thirty healthy adults (9 females) aged 21.6 ± 3.5 years participated in a double-blind, 28-h modified constant routine protocol. At 23 h of wakefulness, participants in the treatment condition (n = 10) were given 2.9 mg/kg caffeine, equivalent to ~200 mg (or 2 espressos) for a 70-kg adult, 5 h before a daytime recovery sleep episode. Throughout the protocol, core and skin body temperatures, DPG, sleep architecture, and subjective alertness and mood were measured. Prior to sleep, caffeine significantly widened the DPG and increased CBT, alertness, and clear-headedness (p < 0.05). Caffeine also disturbed daytime recovery sleep (p < 0.05). Increased CBT and a wider DPG prior to sleep were associated with a longer latency to sleep, and a wider DPG was associated with disturbed recovery sleep (i.e., increased wakefulness after sleep onset, increased stage 1 sleep, decreased sleep efficiency, and decreased slow wave sleep) (p < 0.05). A widening of the DPG following nighttime caffeine may represent a component of the integrated physiological response by which caffeine improves alertness and disturbs subsequent daytime recovery sleep. Furthermore, our findings highlight that sleep disturbances associated with caffeine consumed near the circadian trough of alertness are still present when daytime recovery sleep occurs 5 h or approximately 1 half-life later.
Reducing signal gain in the highly sensitive rod pathway prevents saturation as background light levels increase, allowing the dark-adapted retina to encode stimuli over a range of background luminances. Dopamine release is increased during light adaptation and is generally accepted to suppress rod signaling in light-adapted retinas. However, recent research has suggested that dopamine, acting through D1 receptors, could additionally produce a sensitization of the rod pathway in dim light conditions via gamma-aminobutyric acid (GABA) type C receptors. Here, we evaluated the overall activity of the depolarizing bipolar cell (DBC) population in vivo to ensure the integrity of long-distance network interactions by quantifying the b-wave of the electroretinogram in mice. We showed that dopamine, acting through D1 receptors, reduced the amplitude and sensitivity of rod-driven DBCs during light adaptation by suppressing GABA type A receptor-mediated serial inhibition onto rod DBC GABA type C receptors. Block of D1 receptors did not suppress rod-driven DBC sensitivity when GABAA -mediated serial inhibition was blocked by gabazine, suggesting that the reduction in rod-driven DBC sensitivity in the absence of D1 receptors was due to disinhibition of serial inhibitory GABAergic circuitry rather than a direct facilitatory effect on GABA release onto rod-driven DBC GABA type C receptors. Finally, the large population of GABAergic A17 wide-field amacrine cells known to maintain reciprocal inhibition with rod DBCs could be excluded from the proposed disinhibitory circuit after treatment with 5,7-dihydroxytryptamine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.