Colloidal semiconductor nanoplatelets exhibit quantum size effects due to their thickness of only a few monolayers, together with strong optical band-edge transitions facilitated by large lateral extensions. In this article, we demonstrate room temperature strong coupling of the light and heavy hole exciton transitions of CdSe nanoplatelets with the photonic modes of an open planar microcavity. Vacuum Rabi splittings of 66 ± 1 meV and 58 ± 1 meV are observed for the heavy and light hole excitons, respectively, together with a polariton-mediated hybridization of both transitions. By measuring the concentration of platelets in the film, we compute the transition dipole moment of a nanoplatelet exciton to be μ = (575 ± 110) D. The large oscillator strength and fluorescence quantum yield of semiconductor nanoplatelets provide a perspective toward novel photonic devices by combining polaritonic and spinoptronic effects.
We report on the optical characterization of non-polar a-plane InGaN quantum dots (QDs) grown by metal-organic vapor phase epitaxy using a short nitrogen anneal treatment at the growth temperature. Spatial and spectral mapping of sub-surface QDs have been achieved by cathodoluminescence at 8 K. Microphotoluminescence studies of the QDs reveal resolution limited sharp peaks with typical linewidth of 1 meV at 4.2 K. Time-resolved photoluminescence studies suggest the excitons in these QDs have a typical lifetime of 538 ps, much shorter than that of the c-plane QDs, which is strong evidence of the significant suppression of the internal electric fields.
Due to its unique layer-number dependent electronic band structure and strong excitonic features, atomically thin MoS is an ideal 2D system where intriguing photoexcited-carrier-induced phenomena can be detected in excitonic luminescence. We perform micro-photoluminescence (PL) measurements and observe that the PL peak redshifts nonlinearly in mono- and bi-layer MoS as the excitation power is increased. The excited carrier-induced optical bandgap shrinkage is found to be proportional to n, where n is the optically-induced free carrier density. The large exponent value of 4/3 is explicitly distinguished from a typical value of 1/3 in various semiconductor quantum well systems. The peculiar n dependent optical bandgap redshift may be due to the interplay between bandgap renormalization and reduced exciton binding energy.
We report on optical characterization of self-assembled InGaN quantum dots (QDs) grown on three GaN pseudo-substrates with differing threading dislocation densities. QD density is estimated via microphotoluminscence on a masked sample patterned with circular apertures, and appears to increase with dislocation density. A non-linear excitation technique is used to observe the sharp spectral lines characteristic of QD emission. Temporal variations of the wavelength of emission from single QDs are observed and attributed to spectral diffusion. The magnitude of these temporal variations is seen to increase with dislocation density, suggesting locally fluctuating electric fields due to charges captured by dislocations are responsible for the spectral diffusion in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.