The effect of different growth interruption time on the surface morphology and optical properties of InGaN quantum dots (QDs) grown on 2-inch silicon substrates is investigated. The surface becomes rougher and the photoluminescence intensity has been enhanced significantly when employing the growth interruption method. Temperature-dependent photoluminescence and excitation powerdependent photoluminescence both present unchanged peak energy and line-width of QDs. The sharp increase of PL intensity in medium temperature regime is attributed to the fingerprint of the existence of InGaN QDs. The shape of the QDs are further confirmed by the transmission electron microscopy with a size of 3 nm by 4 nm. Among the samples, a growth interruption time of 30 s gives the best optical performance.