The aim of the study was to establish the frequencies of CYP2C9*1, *2, *3 and CYP2C19*1, *2 and *3 in the south Indian population and to compare them with the inter-racial distribution of the CYP2C9 and CYP2C19 genetic polymorphisms. Genotyping analyses of CYP2C9 and CYP2C19 were conducted in unrelated, healthy volunteers from the three south Indian states of Andhra Pradesh, Karnataka and Kerala, by the polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP). The allele frequencies of the populations of these three states were then pooled with our previous genotyping data of Tamilians (also in south India), to arrive at the distribution of CYP2C9 and CYP2C19 alleles in the south Indian population. Frequencies of CYP2C9 and CYP2C19 alleles and genotypes among various populations were compared using the two-tailed Fisher's exact test. The frequencies of CYP2C9*1, *2 and *3 in the south Indian population were 0.88 (95% CI 0.85-0.91), 0.04 (95% CI 0.02-0.06) and 0.08 (95% CI 0.06-0.11), respectively. The frequencies of CYP2C9 genotypes *1/*1, *1/*2, *1/*3, *2/*2, *2/*3 and *3/*3 were 0.78 (95% CI 0.74-0.82), 0.05 (95% CI 0.03-0.07), 0.15 (95% CI 0.12-0.18), 0.01 (95% CI 0.0-0.02), 0.01 (95% CI 0.0-0.02) and 0.0, respectively. CYP2C19*1, *2 and *3 frequencies were 0.64 (95% CI 0.60-0.68), 0.35 (95% CI 0.31-0.39) and 0.01 (95% CI 0.0-0.03), respectively. As a result of a significant heterogeneity, the data on CYP2C19 genotype frequencies were not pooled. The frequency of CYP2C9*2 mutant alleles in south Indians was higher than in Chinese and Caucasians, while CYP2C9*3 was similar to Caucasians. CYP2C19*2 was higher than in other major populations reported so far. The relatively high CYP2C19 poor-metabolizer genotype frequency of 12.6% indicates that over 28 million south Indians are poor metabolizers of CYP2C19 substrates.
The prevalence of the GSTM1 null genotype differed within India. The frequency of GSTM1 null in South Indians was significantly lower than that in Caucasians. The frequencies of both GSTM1 and GSTT1 null genotypes in South Indians were significantly lower than in the Japanese.
Iron overload has been noticed as a feature of human breast cancer. Cellular iron uptake is regulated by the hemochromatosis and transferrin receptor system, mutations of which cause the iron storage disease hereditary hemochromatosis. To understand the role of hemochromatosis and transferrin receptor system mutations in breast cancer, we analyzed 19 sequence variations at HFE, TFR1, TFR2, and FPN1 and compared genotype frequencies between cases and controls in a German population. There were 688 breast cancer patients and 724 population-based and age-matched controls. For genotyping, we applied the Hemochromatosis Strip Assay and TaqMan allelic discrimination analyses. In addition to genotype frequencies, we established frequencies of compound genotypes. The frequencies of HFE at His63Asp, Ser65Cys, and Cys282Tyr, and of TFR1 at Ser142Gly minor alleles in this German population were 15.9%, 1.8%, 5.6%, and 46.0%, respectively. No rare variants at 15 more loci at HFE, TFR2, and FPN1 were observed in breast cancer patients. There were no significant differences of allele and genotype frequencies between cases and controls. Triple and quadruple compound genotypes at HFE _His63_Cys282-TFR1 _Ser142Gly and HFE _His63_-Ser65_Cys282-TFR1_Ser142Gly showed a nonsignificant increase in cases. Although limited by low numbers, an increased prevalence of the HFE Tyr282 minor allele was observed in breast cancer cases with a high number of affected lymph nodes (P = 0.032). Our data suggest that variants of the hemochromatosis-transferrin receptor system have no direct effect on the incidence of breast cancer in Germany. Possible effects on tumor progression and prognosis remain elusive.
Formalin-fixed paraffin-embedded tissues (FFPET) from archived clinical samples provide an invaluable source for large-scale molecular genetic studies. Pharmacogenetic investigations that require long-term clinical follow-up data of patients may particularly benefit from FFPET analysis. Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and TaqMan-based (Thermus aquaticus polymerase) methodologies have become standard genotyping procedures. However, no data are available on the applicability of MALDI-TOF MS to the genotyping of low quality DNA, as it is usually obtained from FFPET, and data from TaqMan genotyping are limited. We isolated constitutional DNA from 274 FFPET samples (229 patients with breast cancer and 45 patients with benign breast diseases) and genotyped 15 polymorphic loci in 10 genes. Nine SNPs were genotyped by MALDI-TOF MS, and six were genotyped by the TaqMan methodology. We established rates for successful allele assignment for all FFPET, for FFPET prepared prior to 1990, and for FFPET prepared post-1990. Both methodologies showed high success rates ranging between 70.9 and 99.6% (mean: 91.8%) for MALDI-TOF MS and between 82.3 and 97.7% (mean: 91.0%) for TaqMan genotyping. No significant differences in genotyping performances for FFPET prepared prior to 1990 or post-1990 were observed. With the exception of one, all other genotype frequencies were in Hardy-Weinberg equilibrium. Furthermore, genotype frequencies matched those observed in a German breast cancer population and other Caucasian populations. Our study shows for the first time that MALDI-TOF MS and TaqMan genotyping procedures provide reliable data, and are therefore applicable in studies that require large scale FFPET genotyping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.