Single Photon Avalanche Diodes (SPAD) are known for their excellent timing performance which enables Time of Flight capabilities in positron emission tomography (PET). However, current array architectures juxtapose the SPAD with its ancillary electronics at the expense of a poor fill factor of the SPAD array. The 3D vertical integration of SPADs and readout electronics represents a solution to the aforementioned problem. Compared to systems with external electronics readout, 3D vertical integration reduces the SPAD interconnect parasitic capacitance while greatly increasing the photosensitive area and improving overall performances. This paper presents the implementation of two SPAD structures designed for PET. The SPAD structures are designed using Teledyne DALSA high voltage (HV) CMOS technology targeted for a 3-dimensional single photon counting module (3DSPCM). SPAD with two types of guard ring (diffusion-based and virtual guard ring) are designed, fabricated and characterized. All structures are based on a anode in an -well cathode and are implemented along with active quenching circuits for proper characterization. The results show that the contact distribution and the anode-cathode spacing impact the dark count rate (DCR). The design of SPADs with a diffusion guard ring have a DCR down to s m at room temperature, afterpulsing probability of , timing resolution of 27 ps FWHM and PDE of 49% at 480 nm.
Abstract-"eLine", a class of multichannel time-variant integrating front-end Application Specific Integrated Circuits (ASICs), has been completed at SLAC National Accelerator Laboratory for applications at the Linac Coherent Light Source (LCLS). The class, designed for pixelated sensors with columnparallel readout, is composed of two front-end ASICs: one designed for high-dynamic range applications (eLine10k) and one designed for ultra-low noise applications (eLine100). The first allows large input full-scale signals, on the order of 10 4 8keV photons, with a resolution of half a photon FWHM; while the second provides low noise charge integration, up to a full-scale signal of 100 8keV photons, with an equivalent noise charge (ENC) of 55e-r.m.s. Three different prototype systems utilizing the ASICs are described. The first is a 32k-pixel X-ray Active Matrix Pixel Sensor (XAMPS) detector developed at Brookhaven National Laboratory (BNL) for the X-ray Pump Probe instrument (XPP) at LCLS. The XAMPS are monolithic detectors with fast-frame readout and large full-scale signal. In particular, they provide a full well capacity on the order of 10 4 8keV photons per pixel and a resolution of half a photon FWHM. The second prototype, developed around eLine10k, is a beam finder with high dynamic range. The third prototype is developed around eLine100 to be used as detector in a spectrometer. Applications, test results and performance are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.