In this paper, we present a text segmentation method using wavelet packet analysis and k-means clustering algorithm. This approach assumes that the text and non-text regions are considered as two different texture regions. The text segmentation is achieved by using wavelet packet analysis as a feature analysis. The wavelet packet analysis is a method of wavelet decomposition that offers a richer range of possibilities for document image. From these multiscale features, we compute the local energy and intensify the features before adapting the k-means clustering algorithm based on the unsupervised learning rule. The results show that our text segmentation method is effective for document images scanned from newspapers and journals.
Extraction and representation of postures and/or gestures from human activities in videos have been a focus of research in this area of action recognition. With various applications cropping up from different fields, this paper seeks to improve the performance of these action recognition machines by proposing a shape-based silhouette-edge descriptor for the human body. Information entropy, a method to measure the randomness of a sequence of symbols, is used to aid the selection of vital key postures from video frames. Morphological operations are applied to extract and stack edges to uniquely represent different actions shape-wise. To classify an action from a new input video, a Hausdorff distance measure is applied between the gallery representations and the query images formed from the proposed procedure. The method is tested on known public databases for its validation. An effective method of human action annotation and description has been effectively achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.